• Title/Summary/Keyword: Rigid pavement

Search Result 46, Processing Time 0.027 seconds

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

Comparison with Load Transfer Efficiency for Joint Types in Airport Concrete Pavements (줄눈형식에 따른 공항 콘크리트 포장 하중전달율 비교)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn;Kim, Min-Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.9-20
    • /
    • 2014
  • PURPOSES : This study is to compare load transfer efficiency of key joint and dowel joint for airport concrete pavement. METHODS : As AC150/5320-6D of FAA's [Advisory Circular] was changed into AC150/5320-6E, Key joint type of rigid pavement were excluded from Construction Joints. LTE(Load Transfer Efficiency) of dowel joint and key joint were compared by times and seasons through pavement temperature measurement, ocular investigation and HWD measurement. RESULTS : For the joint performance grade of No. 2(The second) runway of airport, 12% of poor rate was observed in key joint and 2% of poor rate in dowel joint. Poor rate of key joint was increased to 17%, if only No. 3~No. 6 slabs, which are mostly loaded from the airplanes, were applied for the study. In apron area, LTE poor rate of key joint was high in winter, and LTE poor rate of dowel joint was at least above 'Fair' grade. In summer, 'Fair' for key joint, 'Acceptable' for dowel joint appeared. CONCLUSIONS : As results, dowel joint was superior than key joint for LTE. Deviations of seasons and times were smaller in dowel joint's result. And LTE in winter was lower than LTE in summer.

Dynamic Analysis of Asphalt Concrete Pavement Structure

  • 윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.241-246
    • /
    • 1996
  • A new solution for the dynamic analysis of as asphalt concrete pavements under moving loads has been developed. The asphalt concrete pavement can be modeled in elastic or viscoelastic medium of multi-layered structure. The subgrade can be modeled as either a rigid base or a semi-infinite halfspace. The loads may be constant or arbitrary circular loads into one direction. The method utilizes the Complex Response Method of transient analysis with a continuum solution in the horizontal direction and a finite-element solution in the vertical direction. This proposed method incorporates such important factors as wave propagation, inertia and damping effects of the medium as well as frequency-dependent asphalt concrete properties. The proposed method has been validted with the full-scale field truck test, which was conducted on instrumented asphalt concrete section on a test track at PACCAR Technical Center in Mount Vernon, Washington. Comparison with field strain data from full-scale pavement tests has shown excellent agreement. Theoretical results have shown that the effect of vehicle speed is significant and that it is in part due to the frequency-dependent

  • PDF

Determination of Shear Wave Velocity Profiles of Natural Soils and Pavement Systems Using Surface Wave Technique (표면파 기법을 이용한 자연지반 및 포장지반의 전단파 속도 분포 추정에 관한 연구)

  • Woo, Je Yoon;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.49-57
    • /
    • 1988
  • A new analytical inversion technique is developed to determine the shear wave velocity profiles of natural soils and pavement systems from the dispersion curves of Rayleigh waves. Haskell's theory on the dispersion of the surface waves in multi-layered elastic solids is utilized. A frequency-unlimited dispersion equation is developed by use of the delta matrix technique. Rigid halfspace is assumed at the depth of the one wavelength of Rayleigh waves. Computer program is coded and validity of the technique is verified through the numerical model tests.

  • PDF

A Sustainable Concrete for Airfield Rigid Pavements (공항 활주로 포장용 친환경 콘크리트의 활용 방법)

  • Salas-Montoya, Andres;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.23-24
    • /
    • 2021
  • The use of recycled concrete aggregates (RCA) as a substitute for natural aggregates in new concrete produces both economic and environmental advantages. Most of the RCA applications for pavements have been primarily applied to support layers for roads and airfields. This paper summarizes a work completed at the University of Illinois in partnership with the O'Hare Modernization Program to examine the effect of coarse and fine RCA on the concrete's fresh and hardened properties for airfield rigid pavement applications. Ten different RCA concrete mixtures were prepared with the incorporation of different percentages of RCA fines as well as replacement of cement with high volume percentages of supplementary cementitious materials such as Class C fly ash and ground granulated blast furnace slag to improve the workability and long-term properties of RCA concrete. All the mixes on this stage included 100% recycled coarse aggregates and the Two-Stage Mixing Approach was used as a mixing procedure. Based on the results obtained in the research, mixes with high percentages of recycled fine and coarse aggregates could be used for construction of airfield concrete pavements in conjunction with supplementary cementitious materials

  • PDF

Construction Issues and Design Procedure for Transverse Steel in Continuously Reinforced Concrete Pavement (CRCP) (연속철근콘크리트 포장의 횡방향 철근 설계방법 및 시공관련 이슈 검토)

  • Choi, Pangil;Won, Moon Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES: The objective of this study is to evaluate construction issues and design for transverse steel in continuously reinforced concrete pavement(CRCP). METHODS : The first continuously reinforced concrete pavement(CRCP) design procedure appeared in the 1972 edition of the "AASHTO Interim Guide for Design of Pavement Structures", which was published in 1981 with Chapter 3 "Guide for the Design of Rigid Pavement" revised. A theory that was accepted at that time for the analysis of steel stress in concrete pavement, called subgrade drag theory(SGDT), was utilized for the design of reinforcement of CRCP - tie bar design and transverse steel design - in the aforementioned AASHTO Interim Guide. However SGDT has severe limitations due to simple assumptions made in the development of the theory. As a result, any design procedures for reinforcement utilizing SGDT may have intrinsic flaws and limitations. In this paper, CRCP design procedure for transverse steel was introduced and the limitations of assumptions for SGDT were evaluated based on various field testing. RESULTS: Various field tests were conducted to evaluate whether the assumptions of SGDT are reasonable or not. Test results show that 1) temperature variations exist along the concrete slab depth, 2) very little stress in transverse steel, and 3) warping and curling in concrete slab from the field test results. As a result, it is clearly revealed out that the assumptions of SGDT are not valid, and transverse steel and tie bar designs should be based on more reasonable theories. CONCLUSIONS : Since longitudinal joint is provided at 4.1-m spacing in Korea, as long as joint saw-cut is made in accordance with specification requirements, the probability of full-depth longitudinal cracking is extremely small. Hence, for transverse steel, the design should be based on the premise that its function is to keep the longitudinal steel at the correct locations. If longitudinal steel can be placed at the correct locations within tolerance limits, transverse steel is no longer needed.

Effects of the Non-linear Stress-Strain Behavior of RAP Concrete on Structural Responses for Rigid Pavement Application (RAP 콘크리트의 비선형 응력-변형률 특성이 강성포장 구조해석에 미치는 영향)

  • Kim, Kukjoo;Chun, Sanghyun;Park, Bongsuk;Tia, Mang
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : This study is primarily focused on evaluating the effects of the non-linear stress-strain behavior of RAP concrete on structural response characteristics as is applicable to concrete pavement. METHODS : A 3D FE model was developed by incorporating the actual stress-strain behavior of RAP concrete obtained via flexural strength testing as a material property model to evaluate the effects of the non-linear stress-strain behavior to failure on the maximum stresses in the concrete slab and potential performance prediction results. In addition, a typical linear elastic model was employed to analyze the structural responses for comparison purposes. The analytical results from the FE model incorporating the actual stress-strain behavior of RAP concrete were compared to the corresponding results from the linear elastic FE model. RESULTS : The results indicate that the linear elastic model tends to yield higher predicted maximum stresses in the concrete as compared to those obtained via the actual stress-strain model. Consequently, these higher predicted stresses lead to a difference in potential performance of the concrete pavement containing RAP. CONCLUSIONS : Analysis of the concrete pavement containing RAP demonstrated that an appropriate analytical model using the actual stress-strain characteristics should be employed to calculate the structural responses of RAP concrete pavement instead of simply assuming the concrete to be a linear elastic material.

Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System (고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가)

  • Kwon, Hong Jun;Lee, Jong Sub;Kwon, Oh Sun;Kwon, Soon Min
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

Mechanical Properties of an Open Graded Asphalt for Semi-rigid Pavement (반강성 포장용 개립도 아스팔트 재료의 성능평가)

  • Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • The present study evaluated the mechanical properties of open graded asphalt for semi-rigid pavements in order to determine the mixing proportion experimentally. A total twelve types of basic mixing proportions were set up and mechanical tests such as marshall stability, porosity, permeability, and cantabro loss were conducted based on Korean standards. From the tests results, it was found that the marshall stability in case of straight and modified asphalt increase up to the contents with 5.0% and 5.5% respectively. The porosity and permeability of asphalt tended to decrease as the asphalt contents increase, the coefficient of correlation between both were estimated 86%. The increase contents with asphalt range from 3.5% to 6.0% tended to decrease the cantabro loss and the modified asphalt enhanced the resistance of cantabro loss with range from 18.8% to 33.1% than straight asphalt under same asphalt contents. In comparison with test results and quality standards, it was concluded that the modified asphalt content of 4.5% is effective to adopt for open graded asphalt.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.