• 제목/요약/키워드: Rigid body mode

검색결과 101건 처리시간 0.023초

Probabilities of initiation of response modes of rigid bodies subjected to base excitations

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.505-523
    • /
    • 2006
  • An unrestrained plane rigid body resting on a horizontal surface which shakes horizontally and vertically may assume one of the five modes of response: rest, slide, slide-rock, rock, and free flight. The first four are nontrivial modes of motion. It is important to study which one of these responses is started from rest as in most studies it is often assumed that the initial mode is the particular mode of response. Criteria governing the initiation of modes are first briefly discussed. It is shown that the commencement of response modes depends on the aspect ratio of the body, coefficients of static and kinetic friction at the body-base interface, and the magnitude of maximum base accelerations. Considering the last two factors as random variables, the initiation of response modes is next studied from a probabilistic point of view. Type 1 extreme value and lognormal distributions are employed for maximum base excitations and coefficient of friction respectively. Analytical expressions for computing the probability values of each mode of response are derived. The effects of slenderness ratio, vertical acceleration, and statistical distributions of maximum acceleration and coefficient of friction are shown through numerical results and plots.

On the accuracy of estimation of rigid body inertia properties from modal testing results

  • Ashory, M.R.;Malekjafarian, A.;Harandi, P.
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.53-65
    • /
    • 2010
  • The rigid body inertia properties of a structure including the mass, the center of gravity location, the mass moments and principal axes of inertia are required for structural dynamic analysis, modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia properties of complex structures. Several experimental approaches have been developed to determine the rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work two experimental methods are used to estimate the rigid body inertia properties of a frame. The first approach consists of using the amount of mass as input to estimate the other inertia properties of frame. In the second approach, the property of orthogonality of modes is used to derive the inertia properties of a frame. The accuracy of the estimated parameters is evaluated through the comparison of the experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is presented.

차량 동특성에 대한 프레임의 유연성 효과 (Flexibility Effects of Frame for Vehicle Dynamic Characteristics)

  • 이상범
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.

충격력을 받는 회전하는 외팔 보의 동적 해석 (Dynamic Analysis of an Impulsively Forced Rotating Cantilever Beam)

  • 임홍석;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the dynamic analysis of an impulsively forced rotating cantilever beam with rigid body motion. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling with the Rayleigh-Ritz assumed mode methods. The stiffness variation effect due to the rigid body motion of the beam is considered in this study Also, the effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical works.

대칭면을 갖는 단일 강체의 순수 병진 및 순 짝힘 모우드 해석 (Analysis for Pure Translation and Couple Modes of an Elastically Suspended Rigid Body with Planes of Symmetry)

  • 김동욱;최용제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.260-267
    • /
    • 2002
  • For an elastically suspended rigid body with the planes of symmetry in a three dimensional space, a novel analysis fur the vibration modes is presented. From the decompositions of the stiffness and inertia matrices, the conditions for the existence of pure translation and pure couple modes are analyzed for an elastically suspended rigid body with the planes of symmetry. From this analysis, it can be showed that how the structure of stiffness and inertia must be related in order to produce the pure translation and pure couple modes when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

자유경계 조건에서의 질량선에 의한 강체특성 규명 (Identification of the Rigid Body Properties using the Mass-line of F.R.F. in Free-boundary Condition)

  • 안세진;정의봉;황대선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.745-749
    • /
    • 2001
  • The rigid body properties of a structure may be estimated easily if the mass-line of the structure could be taken exactly. However, the exact mass-line cannot be obtained experimentally. In the past years, the modal analysis for which the structure is mounted on the flexible supporter is frequently used to acquire the mass-line. Unfortunately, it is difficult not only to mount the structure but also to decouple the coupled 6 dof mode. If the structure is pended by very long and flexible rope to act free, the rigid-body modes influenced by the rope will be eliminated and the improved mass-line will be obtained. In this paper, the method using the mass-line of F.R.F. for rigid body in free-condition is suggested. The robustness of the suggested method was tested and verified numerically. The experimental results also showed a good agreement with the true value.

  • PDF

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석 (Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins)

  • ;이기건;김병하;최정민;강태삼
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.197-208
    • /
    • 2010
  • The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.

트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구 (The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system)

  • 김재환;송시엽;임효석
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.340-343
    • /
    • 2019
  • 본 논문은 동력차에서 견인전동기 기진 주파수와 견인전동기 강체 모드 공진 문제로 인해 발생할 수 있는 현상에 대해 소개하고, 이를 제어하는데 효과적인 설계인자를 해석적으로 검토해보았다. 회전 속도가 변하는 회전기기의 경우, 공진 문제를 해결하기 위해서는 공진주파수 대역을 상용 운전 범위 바깥으로 이동시키거나 동강성을 크게 하는 등의 방법을 통하여 공진 응답이 낮아지도록 하는 방안이 있다. 견인전동기의 운전 범위는 일반적으로 0 r/min ~ 4800 r/min으로 대차모드가 이 운전 영역대를 벗어나게 설계하는 것은 현실적으로 불가능 하다. 따라서 공진 응답에 영향을 주는 설계 인자를 찾아 이를 적절하게 조정하여야 한다. 유한요소 해석 검토 결과, 견인전동기 강체모드 공진 응답에 영향을 주는 설계인자는 트랜섬파이프 간격으로 간격이 지나치게 넓게 설계될 경우 견인전동기 기진력과 강체 모드 간 공진 시 과도한 진동이 발생될 수 있음을 파악하였다.

대각 선회하는 보의 전개 및 수납 (Deployment or Retraction of Beam with Large Rotational Motion)

  • 김상원;김지환
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.111-117
    • /
    • 2001
  • Present work deals with a study on the deployment or retraction of cantilever beam that includes the rigid-body motion of large displacement of beam through the translational and rotational motions in 2-dimensional plane. The equations of motion are derived with respect to non-Cartesian coordinate system. In the formulation of equations of motion, shear deformations and geometrically non-linear effect are included. An assumed mode method is applied and numerical convergence characteristics are studied also. Types of motion of the moving beam are assumed to be classified as‘slow’or‘fast’motion, and the dynamic characteristics are investigated.

  • PDF