• 제목/요약/키워드: Rigid beam

검색결과 410건 처리시간 0.027초

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Sagiroglu, Merve;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.221-231
    • /
    • 2019
  • This paper performs for the first time a simultaneous optimization for members sections along with semi-rigid beam-to-column connections for space steel frames with fixed, semi-rigid, and hinged bases using a biogeography-based optimization algorithm (BBO) and a genetic algorithm (GA). Furthermore, a member's sections optimization for a fully fixed space frame is carried out. A real and accurate simulation of semi-rigid connection behavior is considered in this study, where the semi-rigid base connections are simulated using Kanvinde and Grilli (2012) nonlinear model, which considers deformations in different base connection components under the applied loads, while beam-to-column connections are modeled using the familiar Frye and Morris (1975) nonlinear polynomial model. Moreover, the $P-{\Delta}$ effect and geometric nonlinearity are considered. AISC-LRFD (2016) specification constraints of the stress and displacement are considered as well as section size fitting constraints. The optimization is applied to two benchmark space frame examples to inspect the effect of semi-rigidity on frame weight and drift using BBO and GA algorithms.

강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가 (Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements)

  • 서은아;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.13-21
    • /
    • 2016
  • 기존의 강재 보가 콘크리트에 매립되어 볼트접합 연결되는 기존 하이브리드 접합법의 한계와 단점을 개선하기 위하여 단순한 강접합 절점을 갖는 하이브리드 PC 콘크리트 보 시스템을 개발하였다. 개발된 하이브리드 시스템의 원할한 하중전달을 파악하기 위하여 양단 고정단의 보 실험체 3개를 반복 집중하중 하에서 실험하였다. 주요 변수는 강재 보의 길이로서 지점에서 변곡점까지의 거리의 0.25, 0.5 및 1.0배로 변하였다. 모든 실험체는 동일 주철근 지수를 갖는 철근콘크리트 보에 비해 높은 변위 연성비를 나타냈는데, 보의 반복하중-처짐 관계 및 연성은 강재 보의 길이에 영향을 받지 않았다. 보 길이에 따른 연속 변형률 분포 및 붕괴하중에 기반한 극한하중 예측으로부터 제시된 강접합 절점은 구조적 효율성을 갖는다고 판단된다.

콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구 (Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections)

  • 김철환;이은택
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.741-748
    • /
    • 1998
  • 콘크리트충전 강관기둥-보 강접합부의 역학적 특성을 규명하기 위하여 모델 시험체에 대한 반복가력 실험을 행하였다. 실험변수로는 항복부위, 내부다이어프램의 유공의 크기 및 슬래브 설치 유무이다. 보 항복형 시험체인 경우에는 다이어프램 항복형 시험체에 비하여 충강성이 높고 내력의 저하없이 높은 층간변형을 가지고 있다.

  • PDF

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

SS400 강재를 사용한 개량 T-stub 반강접합부의 역학적 거동 (The Structural Behavior of Semi-Rigid Connections with Reformed T-stub by Using of SS400 Steel)

  • 이명재;양명숙;조원혁
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.241-241
    • /
    • 1999
  • 강구조 건축물의 해석과 설계는 기둥-보 접합부가 완전강접이나 핀접합이라는 가정하에 일반적으로 이루어진다. 그러나 실제로는 많은 경우의 접합부형태들이 반강접합의 거동을 보이고 있다. 필자 등은 개량 T-stub로서 SM490강재를 이용하여 반강접합부의 거동을 조사한 바 있다. 본 연구의 목적은 SS400강재로 된 개량 T-stub를 이용한 기둥-보 반강접합부의 구조적 거동을 조사하기 위한 것이다. 연구방법으로서 개량 T-stub요소의 인장, 압축실험과 해석 및 개량 T-stub를 이용한 기둥-보 접합부의 단조가력 및 반복가력실험을 실시하였다. 본 연구의 실험결과로부터 개량 T-stub를 이용한 반강접합부의 적용가능성이 확인되었다.

  • PDF

Behavior of semi-rigid steel frames under near- and far-field earthquakes

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.625-641
    • /
    • 2020
  • The realistic modeling of the beam-column semi-rigid connection in steel frames attracted the attention of many researchers in the past for the seismic analysis of semi-rigid frames. Comparatively less studies have been made to investigate the behavior of steel frames with semi-rigid connections under different types of earthquake. Herein, the seismic behavior of semi-rigid steel frames is investigated under both far and near-field earthquakes. The semi-rigid connection is modeled by the multilinear plastic link element consisting of rotational springs. The kinematic hysteresis model is used to define the dynamic behavior of the rotational spring, describing the nonlinearity of the semi-rigid connection as defined in SAP2000. The nonlinear time history analysis (NTHA) is performed to obtain response time histories of the frame under scaled earthquakes at three PGA levels denoting the low, medium and high-level earthquakes. The other important parameters varied are the stiffness and strength parameters of the connections, defining the degree of semi-rigidity. For studying the behavior of the semi-rigid frame, a large number of seismic demand parameters are considered. The benchmark for comparison is taken as those of the corresponding rigid frame. Two different frames, namely, a five-story frame and a ten-story frame are considered as the numerical examples. It is shown that semi-rigid frames prove to be effective and beneficial in resisting the seismic forces for near-field earthquakes (PGA ≈ 0.2g), especially in reducing the base shear to a considerable extent for the moderate level of earthquake. Further, the semi-rigid frame with a relatively weaker beam and less connection stiffness may withstand a moderately strong earthquake without having much damage in the beams.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.