• Title/Summary/Keyword: Rigid Mode

Search Result 271, Processing Time 0.024 seconds

Unstable Operation of Francis Pump-Turbine at Runaway: Rigid and Elastic Water Column Oscillation Modes

  • Nicolet, Christophe;Alligne, Sebastien;Kawkabani, Basile;Simond, Jean-Jacques;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-333
    • /
    • 2009
  • This paper presents a numerical simulation study of the transient behavior of a $2{\times}340MW$ pump-turbine power plant, where the results show an unstable behavior at runaway. First, the modeling of hydraulic components based on equivalent schemes is presented. Then, the 2 pump-turbine test case is presented. The transient behavior of the power plant is simulated for a case of emergency shutdown with servomotor failure on Unit 1. Unstable operation at runaway with a period of 15 seconds is properly simulated using a 1-dimensional approach. The simulation results points out a switch after 200 seconds of the unstable behavior between a period of oscillations initially of 15 seconds to a period of oscillation of 2.16 seconds corresponding to the hydraulic circuit first natural period. The pressure fluctuations related to both the rigid and elastic water column mode are presented for oscillation mode characterization. This phenomenon is described as a switch between a rigid and an elastic water column oscillation mode. The influence of the rotating inertia on the switch phenomenon is investigated through a parametric study.

Probabilities of initiation of response modes of rigid bodies subjected to base excitations

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.505-523
    • /
    • 2006
  • An unrestrained plane rigid body resting on a horizontal surface which shakes horizontally and vertically may assume one of the five modes of response: rest, slide, slide-rock, rock, and free flight. The first four are nontrivial modes of motion. It is important to study which one of these responses is started from rest as in most studies it is often assumed that the initial mode is the particular mode of response. Criteria governing the initiation of modes are first briefly discussed. It is shown that the commencement of response modes depends on the aspect ratio of the body, coefficients of static and kinetic friction at the body-base interface, and the magnitude of maximum base accelerations. Considering the last two factors as random variables, the initiation of response modes is next studied from a probabilistic point of view. Type 1 extreme value and lognormal distributions are employed for maximum base excitations and coefficient of friction respectively. Analytical expressions for computing the probability values of each mode of response are derived. The effects of slenderness ratio, vertical acceleration, and statistical distributions of maximum acceleration and coefficient of friction are shown through numerical results and plots.

Computational strategies for improving efficiency in rigid-plastic finite element analysis (강소성 유한요소해석의 안정화와 고능률화에 관한 연구)

  • ;;Yoshihiro, Tomita
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • Effective computational strategies have been proposed in the evaluation of stiffness matrices of rigid-plastic finite element method widely used in simulation of metal forming processes. The stiffness matrices are expressed as the sum of stiffness matrices evaluated by reduced integration and Liu's stabilization matrices which control the occurrence os zero-energy mode due to excessive reduced integration. The proposed method has been applied to the solution of fundamental 3-dimensional problems. The results clarified that the deformed mesh configuration was remarkably stabilized and computation speed attained about 3 times as fast as that of conventional 3-dimensional analyses. Furthermore, computation speed increases by a factor 60 when parallel computation is introduced. This speed has a tendency to increase as the total degree of freedom increases. As a result, this rigid-plastic finite element method enables us to analyze real 3-dimensional forming processes with practically acceptable computation time.

The Lubrication Mode Between the Vane Tip and Camring in an Oil Hydraulic Vane Pump with Intravanes. (인트라 베인식 油壓 베인펌프의 베인 先端部 潤滑모드)

  • Jung, Jae-Youn;Kyogoku, Keiji;N
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.52-56
    • /
    • 1990
  • The Lubrication Mode of line contacts between the vane and camring in an oil hydraulic vane pump with intravanes has been investigated. Variations of the radial acting force of a vane were calculated from previously measured results of dynamic internal pressure in four chambers surrounding a vane, and variations of the lubrication mode were estimated in both the rotational speed range from 500 to 1500 rpm and in the delivery pressure range from 1 to14 Mpa. The results indicate the variations of the radial acting force. It is found that the regimes of lubrication in the vane tip contacts cover rigid-isoviscous to rigid-variable viscosities.

Deployment or Retraction of Beam with Large Rotational Motion (대각 선회하는 보의 전개 및 수납)

  • 김상원;김지환
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.111-117
    • /
    • 2001
  • Present work deals with a study on the deployment or retraction of cantilever beam that includes the rigid-body motion of large displacement of beam through the translational and rotational motions in 2-dimensional plane. The equations of motion are derived with respect to non-Cartesian coordinate system. In the formulation of equations of motion, shear deformations and geometrically non-linear effect are included. An assumed mode method is applied and numerical convergence characteristics are studied also. Types of motion of the moving beam are assumed to be classified as‘slow’or‘fast’motion, and the dynamic characteristics are investigated.

  • PDF

Vibration Analysis of a Pulsator type Washing System (펄세이터형 세탁 시스템의 진동 해석)

  • 이신영;강주석;윤중락;이장무;윤구영;김남권
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.261-272
    • /
    • 1997
  • Recently washing machines are to be in lower vibration and lower sound because of better environment. Vibration problems in washing machines occur in both washing mode and spinning mode, but vibration in spinning mode becomes main problem because of its high rotating speed and continuity. Vibration while spinning is mainly due to rigid body motion of total washing system which includes suspending rods, washing bath, spinning bath, and gear sets. In this study, some researches were done in order to analyze the rigid body motion of washing system and flexible vibration of spinning bath. A basic mathematical model was established, and the effect of position of salt water and shape change of salt water case were considered. And the effect of lengths of suspending rods, attaching angles, vertical and horizontal position, stiffness of spring on the change of vibration were also considered. To identify the effect of salt water on vibration, some measurements were done. When salt water was positioned at upper part, the effect was most and this coincides with the tendency of simulation.

  • PDF

Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion (강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system (트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구)

  • Kim, Jaehwan;Song, Seeyeop;Lim, Hyosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.340-343
    • /
    • 2019
  • In this paper, a problem of mechanical resonance between traction motor's rigid body mode and traction motor's excitation force is introduced, and a bogie design variable affecting the control of resonance response is reviewed numerically. To solve the resonance problem in rotating machinery with variable rotational speeds, resonance frequency should be out of rotational machine's operation range or dynamic stiffness of structures should be increased for resonance response enough to be low. In general, operation range of a traction motor is from 0 r/min to 4800 r/min. It is not possible that all bogie modes are more than 80 Hz. Therefore, it is very important to find design factor affecting resonance response of traction motor's rigid body modes. It is found that key design variable is the gab between transom pipes from finite element analysis. The larger gab is, the higher resonance response when resonance between traction motor's excitation force and traction motor's rigid body mode is happened.