• Title/Summary/Keyword: Rigid Mode

Search Result 271, Processing Time 0.028 seconds

Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing (정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험)

  • Lee, Donghyun;Kim, Byungock;Jung, Junha;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

Development of Efficient Seismic Analysis Model using 2D T-Shape Rigid-body for Wall-Frame Structures with a Central Core (이차원 T형강체를 이용한 중심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this study, an efficient analytical model for the dynamic analysis of tall buildings with a shear wall-frame structural system has been proposed. A shear wall-frame structural system usually consists of a core wall showing flexural behavior and a frame presenting shear behavior. Therefore, the deformed shape of the shear wall-frame structural system is shown by the combination of flexural mode and shear mode. These characteristics should be considered when an efficient analytical model is developed. To this end, the effect of shear wall and frame on the dynamic behavior of a tall building with a dual system has been separately investigated. In this study, the structural characteristics of a separated individual shear wall model and the frame model without shear wall has been evaluated. In order to consider the effect of the shear wall in the frame model without shear wall, a rigid body was used instead of the shear wall. Each equivalent model for the separated shear wall part and frame part has been independently developed and two equivalent models were then combined to create an efficient analytical model for tall buildings with a shear wall-frame structural system. In order to verify the efficiency and accuracy of the proposed method, time history analyses of tall buildings with a shear wall-frame system were performed. Based on analytical results, it has been confirmed that the proposed method can provide accurate results, requiring significantly reduced computational time and memory.

Coordination Modes and Properties of Ag(I) Complex with N,N,N',N',N''-Pentamethyldiethylenetriamine

  • Chun, In-Sung;Kwon, Jung-Ah;Bae, Myung-Nam;Lee, Sim-Seong;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1005-1008
    • /
    • 2006
  • The reaction of $AgClO_{4}$ with acyclic potential tridentate N,N,N',N',N''-pentamethyldiethylenetriamine (pmdeta) has given colorless crystals suitable for X-ray crystallography. The crystal structure ($P2_{1}$/n, a = 14.413(1) $\AA$, b = 25.270(2) $\AA$, c = 16.130(1) $\AA$, b = $103.012(1){^{\circ}}$, V = 5723.7(8) A$\AA^{3}$, Z = 4, R = 0.0349) has been solved and refined. Three silver(I) ions connect four pmdeta ligands to produce discrete complex of $[Ag_3(pmdeta)_4](ClO_4)_3$. A pmdeta ligand is bridged to three silver(I) ions, and three other pmdeta ligands are chelated to each silver(I) center in a tridentate mode. Thus, the product is a rare tri-nuclear silver(I) complex with two different chemical environments. $^{13}C$ NMR and $MAS\;^{13}$C NMR indicate that the tri-nuclear silver(I) complex is not rigid in solution. The contact angles and thermal analyses of the complex are measured and discussed.

Robust control of a heave compensation system for offshore cranes considering the time-delay (시간 지연을 고려한 해상 크레인의 상하 동요 보상 시스템의 강인 제어)

  • Seong, Hyung-Seok;Choi, Hyeong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.105-110
    • /
    • 2017
  • This paper introduces a heave compensation system for offshore crane when it subjected to unexpected disturbances such as ocean waves, tidal currents or winds and their external force. The dynamic model consists of a crane which is considered to behave in the same manner as a rigid body, a hydraulic driven winch, an elastic rope and a payload. To keep the payload from moving upwards and downwards, PD(Proportional-Derivative) control was applied by using linearization. In order to achieve a better performance, the sliding mode control and the nonlinear generalized predictive control algorithm was applied according to the time-delay. As a result, the oscillating amplitude of the payload was reduced by the control algorithm. Considering the time-delay involved in the system to be one second, nonlinear generalized predictive controller with a robust controller was a suitable control algorithm for this heave compensation system because it made the position of te payload reach the desired position with the minimum error. This paper presented a control algorithm using the robust control and its simulation results.

Static and Dynamic Behavior at Low-Frequency Range of Floating Slab Track Discretely Supported by Rubber Mounts in Real-Scale Laboratory Test (고무 마운트로 이산 지지되는 플로팅 슬래브 궤도의 실모형 실내 실험에서의 정적 및 저주파 대역 동적 거동)

  • Hwang, Sung Ho;Jang, Seung Yup;Kim, Eun;Park, Jin Chul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.485-497
    • /
    • 2012
  • Recently, with increasing social interests on noise and vibration induced by railway traffic, the application of floating slab track that can efficiently reduce the railway vibration is increasing. In this study, to more accurately understand the dynamic behavior of the floating slab track, a laboratory mock-up test has been performed, and the static and dynamic behaviors at frequency range near the system resonance frequency were explored. Based on the test results, the design of the floating slab track and the structural analysis model used in the design have been verified. The analytic and test results demonstrate that the dominant frequency of the floating slab track occurs at the frequencies between vertical rigid body mode natural frequency and bending mode natural frequency, and the dominant deformation mode is close to the bending mode. This suggests that in the design of the floating slab track, the bending rigidity of the slab and the boundary conditions at slab joints and slab ends should be taken into consideration. Also, the analytic results by the two-dimensional finite element analysis model using Kelvin-Voigt model, such as static and dynamic deflections and force transmissibility, are found in good agreement with the test results, and thus the model used in this study has shown the reliability suitable to be utilized in the design of the floating slab track.

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

A Design Criterion for the Vibration of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Lee, D.C.;Brennan, M.J.;Mace, B.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.648-655
    • /
    • 2005
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the Engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode

  • PDF

An Analysis of Radiation Efficiency of the Simply Supported Rectangular Plate in Water with Consideration of Low Order Cross Modes (저차 크로스모드를 고려한 단순지지 사각 접수 평판의 방사효율해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.800-807
    • /
    • 2012
  • In this paper, radiation efficiency of the plate surround by an infinite rigid baffle is studied. The plate is simply supported and one side is in contact with air, while other side with water. The pressure and normal velocity over the plate surface are assumed as modal summations, from which a set of linear equations is obtained for fluid-structure coupled problem. It is shown that neglect of the cross modes results in overestimation of the radiation efficiency specifically for mid-frequency ranges. Based on the fact that the responses are mainly determined from the first few cross modes in addition to the diagonal terms, a new algorithm is proposed, where banded matrix is iteratively solved in computing radiation efficiency. In numerical examples, it is found that radiation efficiency obtained from banded matrix is in excellent agreement with the one from the full matrix, while computing time is significantly reduced. It is also found that as frequency grows larger, radiation efficiency considering only diagonal terms is a good approximation.

A Study on the Design of the Flywheel Energy Storage Device to Store the Regenerative Energy (회생에너지 저장용 플라이휠 에너지 저장 장치 설계에 관한 연구)

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byeong-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1045-1052
    • /
    • 2013
  • In this study we deal with design procedures for the flywheel energy storage system that has the capacity to store the regenerative energy produced from the railway vehicles. The flywheel energy storage system (FESS) stores the regenerative electrical energy into the high speed rotational flywheel, by conversion the electrical energy into the mechanical rotational energy. Thus the FESS is composed of the energy conversion components, such as the motor and generator, mechanical support components, such as the rotational rotor, the magnetic bearings to support the rotor, and the digital controller to control the air gap between the rotor and the magnetic bearings. In this paper the design procedures for the rotor operating at the rigid mode and the magnetic bearings to support the rotational rotor without contact are presented.

Vibration Analysis of Partially Fluid-filled Continuous Cylindrical Shells with Intermediate Supports (유체가 부분적으로 채워진 내부지지 연속 원통셸의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.244-252
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics for the partially fluid-filled continuous cylindrical shells with the intermediate supports. The intermediate supports are simulated by two types of artificial springs : the translational spring for the translation for each direction and the rotational spring for a rotation. The springs are continuously distributed along the circumferential direction. By allowing the spring stiffness to become very high compared to the stiffness of the structure, the rigid intermediate supports are approximated. In the theoretical procedure, the Love's thin shell theory is adopted to formulate the theoretical model. The frequency equation of the continuous cylindrical shell is derived by the Rayleigh-Ritz approach based on the energy method. Comparison and convergence studies are carried out to verify and establish the appropriate number of series term and the artificial spring stiffness to produce results with an acceptable order of accuracy. The effect of intermediate supports, their positions and fluid level on the natural frequencies and mode shapes are studied.