• 제목/요약/키워드: Rigid Finite Element Method

검색결과 626건 처리시간 0.034초

Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method

  • Polat, Alper;Kaya, Yusuf
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.247-253
    • /
    • 2022
  • In this study, the problem of discontinuous contact in two functionally graded (FG) layers resting on a rigid plane and loaded by two rigid blocks is solved by the finite element method (FEM). Separate analyzes are made for the cases where the top surfaces of the problem layers are metal, the bottom surfaces are ceramic and the top surfaces are ceramic and the bottom surfaces are metal. For the problem, it is accepted that all surfaces are frictionless. A two-dimensional FEM analysis of the problem is made by using a special macro added to the ANSYS package program The solution of this study, which has no analytical solution in the literature, is given with FEM. Analyzes are made by loading different Q and P loads on the blocks. The normal stress (σy) distributions at the interfaces of FG layers and between the substrate and the rigid plane interface are obtained. In addition, the starting and ending points of the separations between these surfaces are determined. The normal stresses (σx, σy) and shear stresses (τxy) at the point of separation are obtained along the depth. The results obtained are shown in graphics and tables. With this method, effective results are obtained in a very short time. In addition, analytically complex and long problems can be solved with this method.

유연도 영향계수법을 이용한 접촉 결합부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 오제택;조성욱;이규봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

등속조인트 인너레이스 케이지 링 압연공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of a Ring Rolling Process of the Inner Race Cage of a Constant Velocity Joint)

  • 문호근;박정휘;이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.352-356
    • /
    • 2007
  • In this study, a rigid-plastic finite element method is applied to simulating a ring rolling process of the inner race cage of a constant velocity joint for the passengers' cars. The ring rolling process is mathematically modeled by several assumptions. The defect formation at the side ends is predicted in detail. The predictions are compared with the experiments and a good agreement is observed in terms of deformed shape.

  • PDF

다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석 (Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes)

  • 이석원;최대영;전만수
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성 (Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source)

  • 송희수;전진용;서상호
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석 (Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method)

  • 이은택;고광수;안형택;김성일;천승용;김정석;이병희
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

불연속체 구조물의 해석을 위한 강체-고체 복합모델의 개발 (A Development of the Coupled Model by Rigid and Solid Bodies for Discontinuous Structures)

  • 김승덕;정하선
    • 전산구조공학
    • /
    • 제11권4호
    • /
    • pp.169-176
    • /
    • 1998
  • 불연속적 거동이 탁월한 벽식 프리캐스트 구조물을 해석하기 위한 방법으로 유한요소법과 강체요소법 등이 있으나, 이들 해석법은 접합부의 거동을 정확히 반영하지 못하고 있다. 본 연구에서는 패널은 강체적 거동을 하고, 판널과 판널 사이의 접합부는 고체적 거동을 가정하는 강체-고체 복합모델(Coupled Model by Rigid and Solid bodies)에 의한 해석법을 제안하며, 간단한 모델의 예를 통해 검증하였다.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Comptation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.246-249
    • /
    • 1998
  • In the present study, domain decomposition using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. In order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method, the program is easily parallelized using the Parallel Virtual Machine(PVM) library on a workstation cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various domain decompositions and number of processors. Comparing the results, it is concluded that the improvement of performance is obtained through the proposed method.

  • PDF

초소성 성형/확산접합 공정의 유한요소 해석 (Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes)

  • 홍성석;김용환
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.