• Title/Summary/Keyword: Rigid Element

Search Result 1,072, Processing Time 0.024 seconds

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Processes (2차원 박판성형공정해석을 위한 강소성 외연적 유한 요소수식화)

  • 안동규;정동원;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.206-211
    • /
    • 1993
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solution since it improves the convergency problem,memory size and computational time especially for the case of complicated geometry and large element number. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. A direct trial-and-error method is introduced to treat contact and friction. In order to show the validity and effectiveness of the proposed explicit scheme, computation are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic explicit element method can be used as a robust and efficient computational method for analysis of sheet method forming.

  • PDF

Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method (강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계)

  • 최한호;변상규;강범수
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

An Eigen Analysis with Out-of-Plane Deformable Ring Element (면외변형 링 요소를 이용한 고유해석)

  • Moon, Won-Joo;Min, Oak-Key;Kim, Yong-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.

Elastic Analysis of Pre-Cast Panel Structures By Rigid Element method (R. E. M. 에 의한 벽식 PRE-CAST 구조물의 탄성해석)

  • 권택진;김승덕;김기철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.17-24
    • /
    • 1994
  • In the analysis pre-cast large panel structures, we can use the new discrete analyzing method to be consisted of rigid bodies. Because the pre-cast panels we still more rigid than the connection, the rigid element method is more efficient numerical method than F. E. M. The characteristics of R. E. M. is that strains in element are not occurred by external loadings and the deformation of the structures by external loadings is transmitted through springs around elements. In this study, we focus on the comparison of the results from the R. E. M. and the F. E. M. in order to establish the validity of the R. E. M. to analysis of pre-cast panel structures.

  • PDF

Application of the Rigid-Thermoviscoplastic Finite Element Method to Orthogonal Cutting Process (2차원 절삭가공에 대한 강열점소성 유한요소법의 활용)

  • 고대철;고성림;박태준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.965-968
    • /
    • 1997
  • The objective of this study is to develop a rigid-thermoviscoplastic finite element program for the analysis of orthogonal cutting process. Deformation of the workpiece material is considered as rigid-viscoplastic and the numerical solution is obtained from the coupled analysis bctween plastic deformation and temperature field, including treament of temperature dependent material properties. The chip and the burr formation are simulated for the non-steady state orthogonal cutting using the developed program. To validate the program the predicted results at chip and burr format~on stage are compared with the published ones. The case of isothermal cutting process is also considered to study the thermal effect on the machining process.

  • PDF

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Design of Rigid Joints Using Strut-Tie Model (스터럿-타이 모델에 의한 강절점 영역설계에 관한 연구)

  • Won, Dae-Yon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • In order to design rigid zone area of frame structures, it is important to predict the direction change of internal stresses according to the bending moment acting on the joint region. In this study, it was examined whether current highway bridge design standards are useful to design different types of rigid joints having a various haunch shapes. In addition, stress distributions of inside of various rigid joints were inspected using the linear elastic finite element analysis. Based on the results of finite element analysis, the strut-tie models to design rigid joints are proposed. Suggested by this study, the strut-tie models have a same level of accuracy to a linear elastic finite element analysis. The proposed strut-tie models will be useful to design reinforcement details of rigid joints having a various haunch types.

Estimation on Heavy Handling Robot using Flexible-Rigid Multibody Analysis (변형체-강체 다물체 해석을 이용한 초중량물 핸들링로봇의 평가)

  • Kim, Jin-Kwang;Ko, Hae-Ju;Park, Ki-Beom;Kim, Tae-Gyu;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • A flexible-rigid multibody analysis was pen armed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.