• 제목/요약/키워드: Rigid Body Model

검색결과 348건 처리시간 0.026초

CFD based simulations of flutter characteristics of ideal thin plates with and without central slot

  • Zhu, Zhi-Wen;Chen, Zheng-Qing;Gu, Ming
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.1-19
    • /
    • 2009
  • In this paper, the airflow around an ideal thin plate (hereafter referred to as ITP) with various ratios of central slot is simulated by using the finite-difference-method (FDM)-based Arbitrary-Lagrangian-Eulerian descriptions for the rigid oscillating body. The numerical procedure employs the second-order projection scheme to decouple the governing equations, and the multigrid algorithm with three levels to improve the computational efficiency in evaluating of the pressure equation. The present CFD method is validated through comparing the computed flutter derivatives of the ITP without slot to Theodorsen analytical solutions. Then, the unsteady aerodynamics of the ITP with and without central slot is investigated. It is found that even a smaller ratio of central slot of the ITP has notable effects on pressure distributions of the downstream section, and the pressure distributions on the downstream section will further be significantly affected by the slot ratio and the reduced wind speeds. Continuous increase of $A_2^*$ with the increase of central slot may be the key feature of the slotted ITP. Finally, flutter analyses based on the flutter derivatives of the slotted ITP are performed, and moreover, flutter instabilities of a scaled sectional model of a twin-deck bridge with various ratios of deck slot are investigated. The results confirm that the central slot is effective to improve bridge flutter stabilities, and that the flutter critical wind speeds increase with the increase of slot ratio.

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Vertical coherence functions of wind forces and influences on wind-induced responses of a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.;Ding, Q.S.
    • Wind and Structures
    • /
    • 제21권2호
    • /
    • pp.119-158
    • /
    • 2015
  • The characteristics of the coherence functions of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on the Shanghai World Trade Centre - a 492 m super-tall building with section varying along height are studied via a synchronous multi-pressure measurement of the rigid model in wind tunnel simulating of the turbulent, and the corresponding mathematical expressions are proposed there from. The investigations show that the mathematical expressions of coherence functions in across-wind and torsional-wind directions can be constructed by superimposition of a modified exponential decay function and a peak function caused by turbulent flow and vortex shedding respectively, while that in along-wind direction need only be constructed by the former, similar to that of wind speed. Moreover, an inductive analysis method is proposed to summarize the fitted parameters of the wind force coherence functions of every two measurement levels of altitudes. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well. Later, the influences of coherence functions on wind-induced dynamic responses are analyzed in detail based on the proposed mathematical expressions and the frequency-domain method of random vibration theory.

쓰나미 댐퍼 시일의 접촉특성 비교 (Comparison of the Contact Characteristics for Sealing strips of the Tsunami Damper)

  • 서지환;김병탁;진도훈;윤문철;곽재섭
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2015
  • A Tsunami damper, which is installed on the outer wall of a nuclear power plant, is usually used as a ventilation window of the machine room, but can serve as a device for preventing flooding of the machine room when large waves flow over the outer wall. The sealing strip, which is inserted between the casing and the blades, plays an important role in maintaining a watertight environment. In this study, in order to ensure an effective watertight performance of the tsunami damper, FE analysis is conducted to compare the contact characteristics of sealing strips with three different section shapes. In the analysis, the casing and the blade of Tsunami damper are assumed to be rigid bodies; the sealing strip is assumed to be a flexible body. The stress, the strain, and the contact pressure are investigated to examine the sealing performance of each model.

단면 겹치기 접착 조인트의 충돌해석 (An Impact Analysis of Adhesively-Bonded Single Lap Joint)

  • 이주원;나원배
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.172-177
    • /
    • 2010
  • This study presents an explicit dynamic analysis of an adhesively bonded single-lap joint under an impact load. The finite element software, ANSYS LS-DYNA, was used for the analysis and Von Mises stresses were obtained from the analysis. To model the adherents, solid elements were used and a rigid body was assumed for impactor modeling. Three impact heights (1 m, 5 m, and 10 m) were applied to consider different impact conditions and infinite boundary conditions were applied to the end-area of each adherent to save computational time in the analysis. In addition to investigating the stresses in the normal state, we also investigated the stresses in a damaged state (elasticity deterioration), simulated by a change in Young's modulus for 36 of the 3600 elements in the upper layer of the adhesive. The results showed that the location of damage is critical to the stress state of each layer (upper, middle, and lower).

파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어 (Load Frequency Control using Parameter Self-Tuning fuzzy Controller)

  • 탁한호;추연규
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향 (Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process)

  • 문승재;노승탁
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.

광 픽업 액추에이터의 부공진 원인 규명과 저감화 (Analysis and Reduction of Subsidiary Resonance of an Optical Pickup Actuator)

  • 서진규;정호섭;박기환
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.728-734
    • /
    • 2000
  • An asymmetric actuator can be used to reduce the distance between the reflective mirror and objective lens of a small optical disk drive for use in the notebook-sized personal computer data storage devices. However, this asymmetric actuator is very sensitive to the subsidiary resonance which is caused by its rigid body motion. In this paper, an analytical approach using a simple lumped parameter system model is presented with a physical insight to investigate why the subsidiary resonance occurs. The finite element method is used to figure out the force and torque characteristics of the asymmetric actuator which are essential to understand the subsidiary vibration characteristics. The frequency responses are presented to examine how the subsidiary resonance is altered for various situations of having different thickness of a yoke and permanent magnet and of having a different magnet circuit. Finally, the design guidelines to avoid the subsidiary resonance will be presented.

대형 잔향실의 방진 구조 설계 및 검증시험 (Design and Verification of a Large Reverberation Chamber's Isolation System)

  • 김홍배;이득웅
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

충격을 받는 세라믹돔의 기하형상에 따른 파괴해석 (A Fracture Analysis on the Ceramic Dome with Different Geometry under Impact)

  • 권순국;이영신;김재훈;이정희;윤수진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.706-710
    • /
    • 2008
  • The experiment of dome port cover under shock impact is performed with shock tube. The dome port cover blocked intake air duct up from the solid propellant during air breathing vehicle speed reach Mach 2.0. When the air breathing vehicle reach Mach 2.0, the inlet cover is removed and the dome port cover is broken to pieces by detonator or pressure of inlet air. Thus the dome port cover not only must stand the pressure of combustion chamber but also easy to break from the RAM pressure. In this study, a fracture evaluation on the $Al_2O_3$ ceramic spherical dome and circular plate port under impact has been presented. Ceramic were supported by the rigid body and a couple of O-ring. The Mooney-Rivlin model have been used to describe behaviors of both O-ring. And spherical dome and circular plate fracture results of the LS-DYNA code using Johnson-Holmquist(JH-2) constitutive equation was compared.

  • PDF