• Title/Summary/Keyword: Rigid Body Dynamics

Search Result 153, Processing Time 0.024 seconds

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Design of a Track Guidance Algorithm for Formation Flight of UAVs (무인기의 편대비행을 위한 트랙유도 알고리즘 설계)

  • Lee, Dongwoo;Lee, Jaehyun;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper presents a modified track guidance algorithm for formation flight of multiple UAVs. The suggested guidance algorithm is the spatial version of the first order dynamic characteristics for a time-dependent system so the algorithm is able to generate a path without overshoot to track the desired line. A crucial design parameter is a spatial constant that controls the shape of the convergence to an assigned flight path similarly to a time constant. Reference flight trajectories are designed based on a two-dimensional vehicle model, and the performance of the proposed guidance law is verified by numerical simulation using rigid body UAV dynamics with MATLAB/Simulink Aerosim Blockset.

Critical Speed Analysis of a Small Gas Turbine Rotor (소형 가스터빈 회전체의 위험속도 해석)

  • Kim, Young-Cheol;Ha, Jin-Woong;Myung, Ji-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • This paper predicts the critical speeds of a 5MW industrial gas turbine by using commercial rotordynamic tool, DYNAMICS 4.3. The gas turbine is operated at 12,975 rpm on squeeze film dampers. The stiffness of the squeeze film dampers are estimated. The critical speeds of the gas turbine rotor are calculated to have a sufficient separation margin (2%) from the 1st bending mode and pass over 2 rigid body modes below 4,000 cpm. This paper discussed the coupling effects on the dynamic response of the gas turbine.

Development of Truck Crane Analysis Program with Boom Flexibility (붐의 유연성을 고려한 트럭크레인의 설계 전용 동력학 해석 프로그램 개발)

  • 박찬종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.28-35
    • /
    • 1998
  • Computer simulation technique has been applied on the various engineering fields to reduce cost and development period. On this paper, we introduce a crane analysis program. Using this program, we can predict reaction force of each part or supporting force of truck crane on a personal computer system with out exclusive knowledge of multi-body dynamics. In order to consider the effect of boom flexibility according to each working condition, flexible dynamic theory is applied to the program. Actual crane model is analyzed on special work condition using this program and the results are compared with those of rigid boom model.

  • PDF

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Kwak, Moon-K.;Seong, Kwan-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.674-679
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper, we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

  • PDF

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(II. Analysis of the Integrated Current Collection System) (고속전철 집전시스템의 동역학 해석에 관한 연구(II. 집전시스템 통합 해석))

  • Seo Jong-Hwi;Mok Jin-Yong;Jung Il-Ho;Park Tae-Won;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, the combined system equation of motion, which can analyze the dynamic interaction between pantograph and catenary system, is derived by adopting absolute nodal coordinates and rigid body coordinates. The analysis results are compared with real experiment data from test running of Korean high-speed train (HSR 350x). In addition, a computation method for the dynamic stress of contact wire is presented using the derived system equation of motion. This method might be good example and significant in that the structural and multibody dynamics model can be unified into one numerical system.

Dynamic Analysis of Underwater Tracked Vehicle on Extremely Soft Soil by Using Euler Parameters (오일러 매개변수를 이용한 해저연약지반 무한궤도 차량의 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.93-100
    • /
    • 2006
  • This paper is concerned with the dynamic analysis of an underwater tracked vehicle, operating on extremely soft soil of the deep-seafloor. The vehicle is assumed as a rigid-body with 6-dof. The orientation of the vehicle is defined by four Euler parameters. To solve the motion equations of the vehicle, the Newmark numerical integrator is used in the incremental-iterative algorithm. The normalization constraint of Euler parameters is satisfied by using of a sequential updating method. The hydrodynamic force and moment are included in the tracked vehicle's dynamics. The hydrodynamic effects on the performance of tracked vehicles are investigated through numerical simulations.

Dynamic analysis of an excavator manipulator by experimental data (실험결과를 이용한 굴삭기 작업장치부의 동역학 해석)

  • Hong, Je-Min;Kim, Heui-Won;Kim, Dong-Hae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.711-716
    • /
    • 2003
  • This paper presents the inverse dynamic analysis of the hydraulic excavator manipulator based on the experimental data. A three dimensional rigid multi-body model of the hydraulic excavator manipulator was built up. Inverse dynamic analysis for typical operation mode was carried out by the ADAMS program. In order to verify the analysis results with the measured, the hydraulic pressure and displacement of the cylinders were measured and the dynamic analysis was carried out using experimental data. From the results of the cylinder driving forces, good agreements are obtained between the analysis and the measurement.

  • PDF

Sensorless Vibration Control of a Single-Link Flexible Manipulator (단일링크 유연매니퓰레이터의 센서리스 진동제어)

  • 한상수;신호철;서용칠;김승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • In this paper, a new sensorless vibration control scheme is proposed for a flexible manipulator system. A robust sliding mode controller incorporating with a ‘reaction moment observer’ used for the estimation of the reaction moment reciprocally acting on flexible arm and hub inertia is introduced to achieve desired control target. The rigid body dynamics of the single-link flexible manipulator is simply considered in the design of the sliding mode controller. Then, the reaction moment is estimated by the proposed reaction moment observer to suppress the residual vibration of the flexible arm. The performance of the proposed control scheme is verified by computer simulation and experiment.

  • PDF

Active vibration isolation of a multiple mount system using decentralised collocated velocity feedback control (개별 동점 속도제어를 이용한 다점 지지계의 능동진동제어)

  • Kim, Sang-Myeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.291-298
    • /
    • 2000
  • This paper describes a theoretical and experimental investigation into an active vibration isolation system in which four electromagnetic actuators are installed in parallel with each of four passive mounts placed between a piece of equipment and a vibrating base structure. Decentralised velocity feedback control is employed, where each actuator is operated independently by feeding back the absolute equipment velocity at the same location. Although one end of each actuator acts at the sensor positions on the equipment, the control system is not collocated because of the reactive forces acting on the flexible base structure, whose dynamics are strongly coupled with the mounted equipment. Isolation of low frequency vibration is considered where the equipment can be modelled as a rigid body and the mounts as lumped parameter springs and dampers. Control mechanisms are discussed, and some experimental and simulation results are reported.

  • PDF