• Title/Summary/Keyword: Right Mechanism

Search Result 383, Processing Time 0.02 seconds

Perspectives on the Characteristics and Meanings as of a Traditional Ecological Landscape as Dangsan Forest and Dangsan Ritual Place in Seoseong-ri, Wando-gun (완도군 서성리 당산숲.당산제 공간의 전통생태경관적 특성 및 의미 고찰)

  • Choi, Jai-Ung;Kim, Dong-Yeob;Kim, Mi-Heui;Jo, Lock-Whan
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.135-145
    • /
    • 2012
  • Traditional village forests called Dangsan forests and Bibo forests in Korea represent an unique cultural landscape with a history of more than several hundred years. Feng-shui forest in China, Satoyama and Shinto shrine forest in Japan are recognized internationally as 'traditional ecological landscapes'. Dangsan forests and Bibo forests have been preserved through generations in the villages, and are no less valuable than Feng-shui forest, and Satoyama. However, the names of Dangsan forest and Bibo forest have not been well recognized worldwide. Dangsan forest in Seoseong-ri, Wando-gun is located on a mountain slope at a riparian forest. It consists of an evergreen broadleaf forest and Carpinus laxiflora forest. The characteristics of Dangsan forest in Seoseong-ri could be found at 10 sacrifice offering places. Two Dangsan trees on the coastal area are included in the sacrifice offering places. Cultural heritage can retain their value when they are fully sustained. Additional construction, demolition or modification should be banned. Furthermore, all means must be taken to facilitate the preservation of monuments and the value and meanings pertaining to them should not be distorted. In a respect of authenticity, Dangsan forest in Seoseong-ri, Wando-gun seems to have original Dangsan culture based on animism with a philosophic background, where a religious service for the mountain god is held at rock of mountain god, and Dangsan ritual is held at shrine on January 8 at 4:00 am by lunar calendar. Relating to the conservation and management of cultural heritage in international discussion, the importance is that whether there is sustainability on the right to the enjoyment of cultural heritage. Dangsan forest in Seoseong-ri is leaved alone to the public. The forest need a social mechanism to support the recovery of deformed shrine and to heighten public awareness of Dangsan forest in order to claim the value as a unique traditional ecological landscape in Korea.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

EU's Space Code of Conduct: Right Step Forward (EU의 우주행동강령의 의미와 평가)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.27 no.2
    • /
    • pp.211-241
    • /
    • 2012
  • The Draft International Code of Conduct for Outer Space Activities officially proposed by the European Union on the occasion of the 55th Session of the United Nations Peaceful Uses of the Outer Space last June 2012 in Vienna, Austria is to fill the lacunae of the relevant norms to be applied to the human activities in the outer space and thus has the merit our attention. The missing elements of the norms span from the prohibition of an arms race, safety and security of the space objects including the measures to reduce the space debris to the exchange of information of space activities among space-faring nations. The EU's initiatives, when implemented, cover or will eventually prepare for the forum to deal with such issues of interests of the international community. The EU's initiatives begun at the end of 2008 included the unofficial contacts with major space powers including in particular the USA of which position is believed to have been reflected in the Draft with the aim to have it adopted in 2013. Although the Code is made up of soft law rather than hard law for the subscribing countries, the USA seems to be afraid of the eventuality whereby its strategic advantages in the outer space will be affected by the prohibiting norms, possibly to be pursued by the Code from its current non-binding character, of placing weapons in the outer space. It is with this trepidation that the USA has been opposing to the adoption of the United Nations Assembly Resolutions on the prevention of an arms race in the outer space (PAROS) and in the same context to the setting-up of a working group on the arms race in the outer space in the frame of the Conference on Disarmament. China and Russia who together put forward a draft Treaty on Prevention of the Placement of Weapons in Outer Space and of the Threat or Use of Force against Outer Space Objects (PPWT) in 2008 would not feel comfortable either because the EU initiatives will steal the lime light. Consequently their reactions are understandably passive towards the Draft Code while the reaction of the USA to the PPWT was a clear cut "No". With the above background, the future of the EU Code is uncertain. Nevertheless, the purpose of the Code to reduce the space debris, to allow exchange of the information on the space activities, and to protect the space objects through safety and security, all to maximize the principle of the peaceful use and exploration of the outer space is the laudable efforts on the part of EU. When the detailed negotiations will be held, some problems including the cost to be incurred by setting up an office for the clerical works could be discussed for both efficient and economic mechanism. For example, the new clerical works envisaged in the Draft Code could be discharged by the current UN OOSA (Office for Outer Space Affairs) with minimal additional resources. The EU's initiatives are another meaningful contribution following one due to it in adopting the Kyoto Protocol of 1997 to the UNFCCC (UN Framework Convention on the Climate Change) and deserve the praise from the thoughtful international community.

  • PDF