• Title/Summary/Keyword: Riemann Solvers

Search Result 10, Processing Time 0.021 seconds

Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications

  • IBANEZ JOSE MA.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.191-201
    • /
    • 2001
  • My contribution to these proceedings summarizes a general overview on High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.

  • PDF

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Migration from Compressible Code to Preconditioned Code (압축성 코드에서 예조건화 코드로의 이전)

  • Han, Sang-Hoon;Kim, Myeong-Ho;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.183-195
    • /
    • 2007
  • Comprehensive mathematical comparison of numerical dissipation vector was made for a compressible and the preconditioned version Roe's Riemann solvers. Choi and Merkle type preconditioning method was selected from the investigation of the convergence characteristics of the various preconditioning methods for the flows over a two-dimensional bump. The investigation suggests a way of migration from a compressible code to a preconditioning code with a minor changes in Eigenvalues while maintaining the same code structure. Von Neumann stability condition and viscous Jacobian were considered additionally to improve the stability and accuracy for the viscous flow analysis. The developed code was validated through the applications to the standard validation problems.

Propagation Analysis of Dam Break Wave using Approximate Riemann solver (Riemann 해법을 이용한 댐 붕괴파의 전파 해석)

  • Kim, Byung Hyun;Han, Kun Yeon;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.429-439
    • /
    • 2009
  • When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

An Application of the Multi-slope MUSCL to the Shallow Water Equations (천수방정식에 대한 다중 경사 MUSCL의 적용)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.819-830
    • /
    • 2011
  • The multi-slope MUSCL, proposed by T. Buffard and S. Clain, determines slopes of conserved variables at each edge of a cell in the linear reconstructions of data. In this study, the second order accurate numerical model was developed according to the multi-slope MUSCL to solve the shallow water equations on the unstructured grids. The HLLL scheme of approximate Riemann solvers was used to calculate fluxes. For the review of the applicability of the developed model, the results of the model were compared to the 'isolated building test' and the 'model city flooding experiment' conducted as part of the IMPACT (Investigation of extreMe flood Processes And unCerTainty) project in Europe. There were limitations to predict abrupt rising of water depths by the resistance of model buildings and water depths at the specific locations among the buildings. But they were identified as the same problems also revealed in results of the other models to the same experiment. On the more refined meshes to the 'model city flooding experiment' simulated results showed good agreement with measurements. It was verified that the developed model simulated well the complex phenomena such as a dam-break problem and the urban inundation by flash floods.

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.