JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY
34: S191 ~ S201, 2001

Riemann Solvers in Relativistic Hydrodynamics:
Basics and Astrophysical Applications

Jost MA. IBANEZ
Department of Astronomy and Astrophysics, University of Valencia, 46100 Burjassot (Valencia), Spain
E-mail: jose.m.ibanez@uuv.es

(Received Oct. 12, 2001; Accepted Nov. 15, 2001)
ABSTRACT

My contribution to these proceedings summarizes a general overview on High Resolution Shock Capturing meth-
ods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques
achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow,
and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part 1
will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore
some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different
special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to eval-
uate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the
use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical

processes play a crucial role.
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I. INTRODUCTION

In my two talks I tried to offer to the audience
(mainly enthousiastic young korean astrophysicists) a
general overview on the present status of: i) High Res-
olution Shock Capturing methods (HRSC) in the field
of relativistic hydrodynamics, with special emphasis on
schemes based upon Riemann solvers, and ii) their use
in astrophysical applications: relativistic jets (in some
active galactic nuclei), wind accretion onto black holes
(relativistic Bondi-Hoyle-Lyttleton scenario), models of
formation of gamma-ray bursts (relativistic jets from
collapsars) and stellar core collapse.

Readers interested in deepening into the contents of
my talks are addressed to the following reviews: Ibafiez
& Marti 1999, Marti & Miiller 1999, Font 2000 and
Aloy & Marti 2001.

Astrophysical scenarios involving relativistic flows
have drawn the attention and efforts of many resear-
chers since the pioneering studies of May & White
(1967) and Wilson (1972). Relativistic jets, accretion
onto compact objects (in X-ray binaries or in the inner
regions of active galactic nuclei), stellar core collapse,
coalescing compact binaries (neutron star and/or black
holes) and recent models of formation of gamma-ray
bursts (GRBs) are examples of systems in which the
evolution of matter is described within the framework
of the theory of relativity (special or general).

Since 1991 (Marti, Ibdfiez & Miralles 1991) the use
of Riemann solvers, i.e., algorithms designed to solve
Riemann problems (see definition, below) in compu-
tational relativistic hydrodynamics has proved succes-
ful in handling complex flows, with high Lorentz fac-
tors and strong shocks, superseding traditional meth-

Numerical Methods: Hyperbolic Systems of Conservation Laws — Relativity — Jets — Accretion —

ods which failed to describe ultrarelativistic flows (Nor-
man & Winkler 1986). By exploiting the hyperbolic
and conservative character of the relativistic hydro-
dynamic equations, and following the approach devel-
oped in Newtonian hydrodynamics, we extended HRSC
methods to the relativistic case, first in one-dimensional
calculations (Marti, Ibaniez & Miralles 1991), and, later
on, in multidimensional special relativistic (Font et al.
1994, Donatet al. 1998) and multidimensional general
relativistic hydrodynamics (Banyuls et al. 1997, Ibafiez
et al. 2001). Our approach made use of a linearized
Riemann solver based on the knowledge of the spectral
decomposition of the Jacobian matrices of the system.

Unlike the case of classical fluid dynamics the use of
HRSC techniques in relativistic fluid dynamics is very
recent and has yet to cover the full set of possible ap-
plications. In the second part of this proceedings I
will summarize some of the most recent applications in
modelling relativistic astrophysical systems.

The task of developing robust, stable and accurate
(special or general) relativistic hydrocodes is a chal-
lenge in the field of Relativistic Astrophysics. A ge-
neral relativistic hydrocode is a useful research tool for
studying flows which evolve in a background spacetime.
Furthermore, when appropiately coupled with Einstein
equations, such a general relativistic hydrocode is cru-
cial to model the evolution of matter in a dynamical
spacetime. The coupling between geometry and mat-
ter arises through the sources of the corresponding sys-
tem of equations. Such a marriage between numerical
relativity and numerical relativistic hydrodynamics is
useful, for example, to analyze the dynamics (and the
physics) of coalescing compact binaries. These are one
of the most promising sources of gravitational radiation
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to be detected by the near future Earth-based laser-
interferometer observatories of gravitational waves.

II. HYPERBOLIC SYSTEM OF CONSERVATION
LAWS

For the sake of consistency, in this Section I sum-
marize the basic definitions and properties of hyperbo-
lic systems of conservation laws (subsection §/1.1), in
connection with HRSC techniques (subsection §11.2),
and applied them to the particular system of equa-
tions of relativistic hydrodynamics (subsections §11.3
and §II.4). Further mathematical details can be found
in the following textbooks: Anile (1989), Lax (1972),
Leveque (1991) and Toro (1997).

II.1.-Hyperbolic systems of conservation laws: Ba-
sics .

Let us start by considering the system of p equations
of conservation laws

Bu - Bt (u)
5L B 0 () )
where u = (uy,u,...,up)7 is the vector of unknowns,
function of x and t, with x = (z1,Z2,...,%q4) € R¢ and
£;(u) = (fij, f2j,---» ;)7 is the vector of fluxes.
Formally, system (1) expresses the conservation of
the vector u. Let D be an arbitrary domain of R and
let n = (ny,...,nq4) be the outward unit normal to the
boundary 8D of D. Then, from (1), it follows that

L
d/ / -

— | udx+ f;(u)n;dS =0. 2
7, ;w]()], - @

This balance equation establishes that the time varia-
tion of [, udx is equal to the losses through the bound-
ary 0D.

Now, forall j = 1,...,d let

Ay = 2B )

be the Jacobian matrix of f;(u). The system (1) is
called hyperbolic if, for any w = (w1, ...,wq) € R?, and
for any u, the matrix

d
Ala,w) =3 w;A(w) (4)

has p real eigenvalues A\ (u,w) < Xp(uw) < -+ <
Ap(u,w) and p linearly independent (right) eigenvec-
tors r; (u,w), ra(u,w), ..., rp(u,w). If, in addition, the
eigenvalues i (u,w) are all different, the system (1) is
called strictly hyperbolic.

In most of the cases one shall be concerned with the
so-called initial value problem (IVP), i.e., the solution
of system (1) with the initial condition

u(x,t = 0) = ug(x). (5)

A key property of hyperbolic systems is that fea-

tures in the solution propagate at characteristic speeds

given by the eigenvalues of the Jacobian matrices. The
characteristic curves associated to system (1) are the
integral curves of the differential equations

dz

?l't—z/\k(u(xvt))7 k=1,...,p, (6)
(d = 1). Tt can easily be proven that, along these curves
the so-called characteristic variables (a combination of
the components of u) are constant. Essentially, charac-
teristic curves give information about the propagation
of the initial data, which formally allows one to recon-

struct the solution for the initial value problem (1) with
(5) at t > 0.

Continuous and differentiable solutions that satisfy
(1) and (5) pointwise are called classical solutions.
However, for nonlinear systems, classical solutions do
not exist in general even when the initial condition ug
is a smooth function, and discontinuities develop after
a finite time. Then one seeks generalized solutions that
satisfy the integral form of the conservation system (2)
which are classical solutions where they are continu-
ous and have a finite number of discontinuities (weak
solutions). The following theorem characterizes these
solutions. '

Let u be a piecewise smooth function. Then, uis a
solution of the integral form of the conservation system
if and only if the two following conditions are satisfied:

1. u is a classical solution in the domains where it
is continuous.

2. Across a given surface of discontinuity, ¥, it satis-
fies the jump conditions (Rankine-Hugoniot con-
ditions)

d
(ur—ur)n+y_ [f(ur) = fi(ur) na; = 0, (7)

=1

where u; and ug stand, respectively, for the val-
ues of u on the left and right hand sides of X,
and n = (ny,nz1,Nz2,...,Nzq4) denotes a vector
normal to .

For 1D systems, the Rankine-Hugoniot jump condition
(7) reduces to

slug —wg) = flup) — fu)  (8)

where s is the propagation velocity of the discontinuity.

Rankine-Hugoniot conditions follow from the con-
servation of fluxes across the surfaces of discontinuity.
They can be used in combination with standard finite-
difference methods for the smooth regions and special
procedures for tracking the location of discontinuities

“to solve the equations in the presence of shocks (shock-

tracking approach). In 1D this is often a viable ap-
proach. However, in multidimensional applications the
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discontinuities lie along curves (in 2D) or surfaces (in
3D) and in realistic problems there may be many such
discontinuities interacting in complicated ways, making
the use of shock-tracking methods much more difficult.

The class of all weak solutions is too wide in the sense
that there is no uniqueness for the initial value prob-
lem. Therefore, an effort should be made to develop
numerical methods picking up the physically admissi-
ble solution. Mathematically, this solution is character-
ized by the so-called entropy condition (in the language
of fluids, the condition that the entropy of any fluid
element should increase when running into a disconti-
nuity). The characterization of the entropy-satisfying
solutions for scalar equations follows Oleinik (1963),
whereas for systems of conservation laws it has been
developed by Lax (1972) .

Most HRSC methods are based on exact or approx-
imate solutions of Riemann problems between contigu-
ous numerical cells. Consider the hyperbolic system of
conservation laws in 1D

Ou  Of(u)
E—'— Jzx =0 )

with initial data u(z,0) = ug(z). A Riemann problem
for system (9) is an initial value problem with discon-
tinuous data, i.e.,

_Jup ifzx <0
uo—{uR ifz>0 (10)

The Riemann problem is invariant under similarity
transformations (z,t) — (az,at), a > 0, so that the
solution is constant along the straight lines z/t = con-
stant and, hence, self-similar. It consists of constant
states separated by rarefaction waves (continuous self-
similar solutions of the differential system), shocks and
contact discontinuities (Lax 1972). In the following I
will denote the Riemann solution for the left and right
states uy and ug, respectively, as u(z/t; ur, ug).

I1.2.- High-Resolution Shock-Capturing schemes

Let us start by considering an IVP for (9). Finite-
difference methods are based on a discretization of the
x —t plane defined by the discrete mesh points (z;,t")

z;=(—1/2)Az, j=1,2,. .. (11)
" =nAt, n=0,1,2,..., (12)

where Az and At are, respectively the cell width and
the time step. A finite-difference scheme is a time-
marching procedure allowing one to obtain approxima-
tions to the solution in the mesh points, u?“, from
the approximations in previous time steps u?. Quan-
tity u is an approximation to u(z;,¢") but, in the case
of a conservation law, it is often preferable to view it as
an approximation to the average of u(z,t) within the

numerical cell [z; 1 /2, i1 /2] (251012 = (€ +Tj21)/2)

1 /xnl/z ( \d (13)
u? & - u(z,t™)dz,
J Az N

consistent with the integral form of the conservation
law. ’ .

For hyperbolic systems of conservation laws, meth-
ods in conservation form are preferred as they guar-
antee that the convergence (if it exists) is to one of
the weak solutions of the original system of equations
(Laz- Wendroff theorem (Lax & Wendroff 1960). Con-
servation form means that the algorithm 1s written as

At
un+1 = q” n n

£ n
4 = ;i ——A—x(f(uj_r,uj_H_l,...,uj+q)—

—f(u?—r—17u?—r7 e au‘?-i-Qvl)) (14)

where f is a consistent (i.e., f(u,u,...,u) = f(u)) nu-
merical flux function. The Lax-Wendroff theorem does
not state whether the method converges. To guaran-
tee convergence, some form of stability is required, as
for linear problems (Laz equivalence theorem (Richt-
myer & Morton 1967). In this direction, the notion of
total-variation stability has proven very successful al-
though powerful results have only been obtained for
scalar conservation laws. The total variation of a solu-
tion at ¢t = t™, TV(u™), is defined as

+o0
TV(@™) =) |u}, —ul| (15)
Jj=0

and a numerical scheme is said to be TV-stable if
TV(u™) is bounded for all A¢ at any time for each
initial data. For a non-linear scalar conservation law,
TV-stability is a sufficient condition for convergence of
numerical schemes in conservation form with consistent
numerical flux functions (Leveque 1992).

In recent years a very interesting line of research
has focused on developing high-order, accurate meth-
ods in conservation form satisfying the condition of TV-
stability. The conservation form is ensured by start-
ing with the integral version of the partial differential
equation in conservation form. Integrating the PDE
in a spacetime computational cell [z;_y,3,%;41/2] X
[t",¢"T1] and comparing with (14), the numerical flux
function f;,/, is seen to be an approximation to the
time-averaged flux across the interface, i.e.,

R 1

fj+1/2 =~ A_ f(u($]+1/g,t))dt (16)

t /i

In the above expression, the flux integral depends on
the solution at the numerical interfaces, u(T;41/2,1),
during the time step. Hence, a possible procedure is to
calculate u(z;1,/2,t) by solving Riemann problems at
every numerical interface to obtain

u(zj41/2,t) = u(0;uf, ul,). (17)

This is the approach followed by an important subset of
shock-capturing methods, the so-called Godunov-type
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methods (Harten, Lax & van Leer 1983, Einfeldt 1988).
These methods are written in conservation form and
use different procedures (Riemann solvers) to compute
approximations to u(O;u?,u?H). o

High-order of accuracy is usually achieved by us-
ing conservative polynomial functions to interpolate the
approximate solutions within the numerical cells. The
idea is to produce more accurate left and right states
for the Riemann problems by substituting the mean
values u} (that give only first-order accuracy) for bet-
ter approximations of the true flux near the interfaces,
uhl/z, U?H/-z (the fluz-corrected-transport algorithm
(Boris & Book 1973) constitutes an alternative pro-
cedure where higher accuracy is obtained by adding
an anti-diffusive flux term to the first-order numeri-
cal flux). The interpolation algorithms have to pre-
serve the TV-stability of the scheme and this is usu-
ally achieved by using monotonic functions which lead
to a decrease in the total variation (total-variation-
diminishing schemes, TVD; see Harten 1984). If R
is an interpolant function for the approximate so-
lution u™ and u(z,t") is the interpolated function
within the cells, i.e., u(z,t™) = R(u";z), satisfying
TV(a(,,t")) < TV(u") then it can be proven that
the whole scheme verifies TV(u™*!) < TV(u"). High-
order TVD schemes were first constructed by van Leer
(1979) who obtained second-order accuracy by using
monotonic piecewise linear slopes for cell reconstruc-
tion. The piecewise parabolic method (PPM) of Colella
and Woodward (1984) provides higher accuracy. The
TVD property implies TV-stability but can be too re-
strictive. In fact, TVD methods degenerate to first or-
der accuracy at extreme points (Osher & Chakravarthy
1984). Hence, other reconstruction alternatives have
been developed in which some growth of the total vari-
ation is allowed. This is the case of the total-variation-
bounded schemes (Shu 1987), essentially nonoscillatory
(ENO) schemes (Harten et al. 1987) and the piecewise-
hyperbolic method (Marquina 1994).

1II. THE EQUATIONS OF GENERAL RELATI-
VISTIC HYDRODYNAMICS AS A HYPERBOLIC
SYSTEM OF CONSERVATION LAWS

II1.1.- The equations of general relativistic hydrody-
namics

The evolution of a relativistic fluid is governed by
a system of equations which summarize local conser-
vation laws: the local conservation of baryon num-
ber, V -J = 0, and the local conservation of energy-
momentum, V - T = 0 (V- stands for the covariant
divergence).

If {0;,8;} define the coordinate basis of 4-vectors
which are tangents to the corresponding coordinate
curves, then, the current of rest-mass, J, and the
energy-momentum tensor, T, for a perfect fluid, have
the components: J# = pu*, and T*" = phu*u” + pg"”,
respectively, p being the rest-mass density, p the pres-
sure and h the specific enthalpy, defined by A = 1 +
€ + p/p, where ¢ is the specific internal energy. w* is

the four-velocity of the fluid and g,, defines the met-
ric of the spacetime M where the fluid evolves. As
usual, Greek (Latin) indices run from 0 to 3 (1 to 3) -
or, alternatively, they stand for the general coordinates
{t,z,y,2} ({z,y,2}) — and the system of units is the
so-called geometrized (¢ = G = 1).

An equation of state p = p(p,e) closes, as usual,
the system. Accordingly, the local sound velocity c;
satisfies: hc? = x + (p/p*)k, with x = Op/dp|. and
K = Op/0¢,.

Following Banyuls et al. (1997), let M be a gene-
ral spacetime described by the four dimensional metric
tensor g,,. According to the {3 + 1} formalism, the
metric is split into the objects a (lapse), 8° (shift) and
7:j, keeping the line element in the form:

ds? = —(a® — BiBY)dt* + 2B;dz'dt + vijdzidr’ (18
4

If n is a unit timelike vector field normal to the
spacelike hypersurfaces ¥, (t = const.), then, by def-
inition of a and §% is: 8, = an + §'0;, with n- 9; =
0, Vi. Observers, O, at rest in the slice ¥, i.e., those
having n as four-velocity (Eulerian observers), measure
the following velocity of the fluid

vt o + E

out  «

(19)

where W = —(u - n) = au’, the Lorentz factor, satisfies
W = (1 —v?)~12 with v = vo' (v; = 7;07).

Let us define a basis adapted to the observer O,
e = {n,8;}, and the following five four-vector fields -
{J, T-n, T -0, T 38, T-0s}. Hence, the system of
equations of general relativistic hydrodynamics can be
written

V- -A=s, (20)
where A denotes any of the above 5 vector fields, and
s is the corresponding source term.

The set of conserved variables gathers those quanti-
ties which are directly measured by Og, i.e., the rest-
mass density (D), the momentum density in the j-
direction (S;) and the total energy density (E). In
terms of the primitive variables w = (p,v;,€) (v; =
7v;;v7) they are

D=pW | 8 =phW?; , E=phW?—p (21)

Taking all the above relations together, the funda-
mental first-order, flux-conservative system reads

1 <8ﬁF0(w) L VGE W)
/=g \ 929 oz

where the quantities F*(w) are

)=stw) 2

Fo(w) = (D, S;,7) (23)
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Fi(w) = (D <vi — E) ) (24).
S; (vi - %) + pé;, (25)

T <vi - %) + pvi> (26)

and the corresponding sources s(w) are

_ . |
s(w) = <O,TW <# — Fiug(;j> , (27)
a <T“°861% . T”"r3u>) (28)

7 being 7 = E — D, and g = det(g,,) is such that
V=9 =a/7 (v = det(vy))
H1.2.- The characteristic fields

Modern HRSC schemes use the characteristic struc-
ture of the hyperbolic system of conservation laws. In
many Godunov-type schemes, the characteristic struc-
ture is used to compute either an exact or an approx-
imate solution of a family of local Riemann problems
at each cell interface. In characteristic based methods
the characteristic structure is used to compute the local
characteristic fields, which define the directions along
which the characteristic variables propagate. In both
these approaches, the characteristic decomposition of
the Jacobian matrices of the nonlinear system of con-
servation laws is important, not only to compute the
numerical fluxes at the interfaces, but because experi-
ence has shown that it facilitates a robust upgrading of
the order of a numerical scheme.

The three 5 x 5-Jacobian matrices B* associated to
system (22) are
: 5]
L i daty 2
B'=a 50 (29)
The full spectral decomposition of the above three
5 x 5-Jacobian matrices B* can be found in Ibafez et
al. (2001).

For the sake of completeness let me include the ex-
pressions of the eigenvalues:

Ao = av® — 8% (triple) (30)

which defines the material waves, and

(83 . -
A= {v"(1-c)*

§

e /(=)= (1 = v2e) — v (1 = )]} - 67 (31)

which are associated with the acoustic waves.

As the reader can easily notice the characteristic
wave speeds, in the relativistic case, not only depend on
the fluid velocity components in the wave propagation
direction, but also on the normal velocity components.

This coupling adds new numerical difficulties which are
specific to relativistic fluid dynamics. Figures 1 and 2
will help the reader to have a clear idea about the be-
haviour of the characteristic fields (assuming that the
vector of unknowns and fluxes depend only on the spa-
tial coordinate z and time t). In both figures I have
plotted the functions A (z—direction) corresponding to
a Schwarzschild spacetime, in terms of the modulus of
velocity, for a given value of the local speed of sound
{(¢s = 0.1), and for three different values of the transver-

sal velocity vy = /(v¥)? + (v#)%: v; = 0,0.4,0.8.

In Fig. 1, I have selected a particular value of the
radial coordinate r/2M = 10, where M is the mass of
the source, in order to mimic the asymptotically flat re-
gion. Hence the curves shown in this figure suggest the
fundamental issues of the dynamics in a Minkowskian
spacetime: i) The characteristic fields converge in the
ultrarrelativistic regime (like the hypersonic regime in
the classical case). ii) Unlike the Newtonian case, the
influence of the the transversal velocity is very remark-
able. For the same setup, in the classical case, the
curves would be straight lines starting (in v = 0) at
+0.1 and 0 for A+ and Ag, respectively.

Fig. 2 is analogous to Fig. 1 but the value of r/2M
is 1.5. Hence, in this case I have emphasized the re-
lativistic effects coming from the geometrical factors.
The trend is clear, as far as the gravitational field be-
comes stronger: the dynamics looks like the hypersonic
regime (the characteristic fields become parallel) and
the characteristic velocities tend to zero in the limit
when the lapse tends to zero.

We end this section pointing out that covariant
formulations of the general relativistic hydrodynamic
equations, alternative to the one described here, are
available in the literature (Eulderink & Mellema, 1995;
Papadopoulos & Font, 2000). These formulations are
also suited for the used of advanced HRSC schemes.
The corresponding characteristic structure can be found
in the above references.

111.8.- Riemann Solvers in Relativistic Hydrodynam-
ics

The scientific literature concerning with special re-
lativistic Riemann Solvers (SRRS) has known a spec-
tacular progress during the second half of 1990s. Al-
though some of the SRRS proposed are a straigthfor-
ward extension of the corresponding in classical fluid
dynamics, most of them have been specifically designed
to handle the Riemann problem of the equations of
(special) relativistic hydrodynamics (for perfect flu-
ids). An up-to-dated list of the SRRS can be found in
Mart{ & Miiller (1999): i) Roe-type (Roe, 1981) SRRS
(Mart{, Ibafiez & Miralles, 1991). ii} HLLE (Harten
et al, 1984) SRRS (Schneider et al., 1993). iii} The
exact SRRS (Marti & Miller, 1994). iv) Two-Shock
Approximation (Balsara, 1994). v) ENO (Essentially
Non-Oscillatory, Shu & Osher, 1989) SRRS (Dolezal &
Wong, 1995). vi) General relativistic extension of Roe
RS (Eulderink & Mellema, 1995). vii) Upwind SRRS
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Eigenvalues

Fig. 1.— Eigenvalues (z—direction) as a function of the modulus of velocity. A

*Schwarzschild background has been considered with a value of the quantity r/2M (M is

the mass of the source) of 10° (i.e., an asymptotically Minkowskian spacetime). Three

different. values of the transversal velocity v; = /(v¥)? + (v#)? have been taken inio
account: vy = 0,0.4,0.8. The local speed of sound is 0.1
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Cs= 0.1, r/2M= 1.5
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Fig. 2.— Eigenvalues (z—direction) as a function of the modulus of velocity. A

Schwarzschild background has been considered with a value of the quantity r/2M (M
is the mass of the source) of 1.5 (i.e., a region where the gravitational field is strong).

Three different values of the transversal velocity vy = 1/ (v¥)? + (v¥)? have been taken
into account: v, = 0,0.4,0.8. The local speed of sound is 0.1
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(Falle & Komissarov, 1996). viii) Relativistic extension
of PPM (Piecewise Parabolic Method, Marti & Miiller,
1996). ix) Glimm SRRS (Wen, Panaitescu & Laguna,
1997). x) Iterative SRRS (Dai & Woodward, 1997). xi)
Marquina’s flux formula (Donat et al., 1998). xii) The
exact SRRS for non-zero transversal velocities (Pons,
Marti & Miiller, 2000).

To end this first part, let me draw the reader’s at-
tention to the paper by Pons et al. (1998) in which we
show how to extend any SRRS to the field of general-
relativistic hydrodynamics.

IV. ASTROPHYSICAL APPLICATIONS

In this second part I am going to summarize the
main results obtained by our group in the study of as-
trophysical systems where flows evolve reaching veloc-
ities near the speed of light and/or-in the presence of
strong gravitational fields (background or dynamical).

1V.1.- Relativistic Jets

In terms of the distance to the central object (a su-
permassive black hole) powering the nuclear activity
in radio loud active galactic nuclei we can distinguish,
in their associated relativistic jets, three main regions:
Subparsec scale, Parsec scale and Kiloparsec scale.

At kiloparsec scales, the implications of relativistic
flow speeds and/or relativistic internal energies in the
morphology and dynamics of jets have been the subject
of a detailed investigation: van Putten 1993, Marti,
Miiller & Ibaiiez 1994, Duncan & Hughes 1994, Marti
et al. 1995, Marti et al. 1997. Beams with large in-
ternal energies (hot jets) show little internal structure
and relatively smooth cocoons allowing the terminal
shock (the hot spot in the radio maps) to remain well-
defined during the evolution. Their morphologies re-
semble those observed in naked quasar jets like 3C273
(Davis, Muxlow & Conway 1985). Highly supersonic
models, in which kinematic relativistic effects dominate
due to high beam Lorentz factors (cold jets), display
extended overpressured cocoons. As noted by Marti
et al. (1995), these overpressured cocoons can help to
confine the jets during the early stages of evolution and
even cause their deflection when propagating through
non-homogeneous environments. The cocoon overpres-
sure causes the formation of a series of oblique shocks
within the beam in which the synchrotron emission
is enhanced. In long term simulations (Scheck et al.
2001) the evolution is dominated by a strong decelera-
tion phase during which large lobes of jet material, like
the ones observed in many FRIIs (e.g., Cyg A, see Car-
illi et al. 1996), start to inflate around the jet’s head.
The numerical simulations reproduce some properties
observed in powerful extragalactic radio jets (lobe in-
flation, hot spot advance speeds and pressures, decel-
eration of the beam flow along the jet) and can help to
constrain the values of basic parameters (such as the
particle density and the flow speed) in the jets of real
sources.

The development of multidimensional relativistic hy-
drodynamic codes has allowed the simulation of par-

sec scale jets and superluminal radio components for
the first time. The presence of emitting flows at al-
most the speed of light enhance the importance of
relativistic effects in the appearance of these sources
(relativistic Doppler boosting, light aberration, time
delays). Hence, models should use a combination of
hydrodynamics and synchrotron radiation transfer to
compare them with observations. In these models,
moving radio components are obtained from perturba-
tions in steady relativistic jets. These jets propagate
through pressure decreasing atmospheres causing them
to expand and accounting for the observed jet open-
ing angles. Where pressure mismatches exist between
the jet and the surrounding atmosphere reconfinement
shocks are produced. The energy density enhancement
produced downstream from these shocks can give rise
to stationary radio knots like those observed in many
VLBI sources. Superluminal components are produced
by triggering small perturbations in these steady jets
which propagate at almost the jet flow speed. The first
radio emission simulations from high-resolution three-
dimensional relativistic hydrodynamic jets have been
presented in Aloy et al. (1999b, 2000a). They have
been generated running GENESIS (Aloy et al. 1999a),
an optimized and parallelized 3D special relativistic
hydro-code, which is suited for massively parallel com-
puters with distributed memory. A general-relativistic
version of GENESIS is currently in progress.

IV.2.- Jets from Collapsars

Various catastrophic collapse events have been pro-
posed to explain the energies released in a GRB in-
cluding mergers of compact binaries (Pacynski 1986;
Goodman 1986; Eichler et al. 1989; Mochkovitch et
al. 1993), collapsars (Woosley 1993) and hypernovae
(Pacyniski 1998). According to the current view these
models require a common engine, namely a stellar mass
black hole (BH) which accretes up to several solar
masses of matter. A fraction of the gravitational bind-
ing energy released by accretion is thought to power
a pair fireball. If the baryon load of the fireball is not
too large, the baryons are accelerated together with the
et e~ pairs to Lorentz factors > 10% (Cavallo & Rees
1978). Such relativistic flows are supported by radio
observations of GRB 980425 (Kulkarni et al. 1998).

MacFadyen & Woosley (1999, MW99) have explored
the evolution of rotating helium stars (M, > 10 M)
whose iron core collapse does not produce a success-
ful outgoing shock, but instead forms a BH surrounded
by a compact accretion torus. Assuming that the ef-
ficiency of energy deposition is higher in the polar re-
gions, MW99 obtain relativistic jets along the rotation
axis, which remain highly focused and seem capable
of penetrating the star. However, as their simulations
were performed with a Newtonian code, they obtain
speeds in the jet flow which are appreciably superlumi-
nal. Using a collapsar progenitor, provided by Mac-
Fadyen & Woosley, we have simulated (Aloy et al.,
2000b) the propagation of an axisymmetric jet through
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a collapsing rotating massive star with the multidimen-
sional relativistic hydrodynamic code GENESIS. The
jet forms as a consequece of an assumed energy deposi-
tion in the range 10°° — 105! ergs s~ within a 30° cone
around the rotation axis.

We have assumed a spacetime corresponding to a
Schwarzschild BH. Effects due to the self-gravity of the
star on the dynamics are neglected. The equation of
state includes the contributions of non-relativistic nu-
cleons treated as a mixture of Boltzmann gases, radia-
tion, and an approximate correction due to et e~ -pairs.
Complete ionization is assumed, and the effects due to
degeneracy are neglected. We advect nine non-reacting
nuclear species which are present in the initial model:
C!2, 016, Ne?®, Mg?4, Si*® Ni®® He?, neutrons and
protons. ’

The jet flow is strongly beamed, spatially inhomoge-
neous, and time dependent. The jet reaches the surface
of the stellar progenitor intact. At breakout, the maxi-
mum Lorentz factor of the jet flow is 33. Abfter break-
out, the jet accelerates into the circumstellar medium,
whose density is assumed to decrease exponentially and
then become constant (~ 107> g cm™*. Outside the
star, the flow begins to expand laterally but the beam
remains very well collimated. When the simulation
ends, the Lorentz factor has increased to 44.

IV.3.- Relativistic Bondi-Hoyle Accretion

Recent discoveries made in the field of X-ray Astron-
omy have greatly increased interest in the physics of
accretion flows around compact objects (neutron stars
and black holes). Analysis of quasi-periodic oscilla-
tions (QPOs), in the kHz range, observed in neutron
star X-ray binaries (van der Klis 1997) may lead to
measurements of the precession of the accretion disk,
due to the Lense-Thirring effect (Stella & Vietri 1998).
Same line of reasoning applied to QPOs observed in the
black hole candidate GRS 19154105 (Morgan, Remil-
lard & Greiner 1997) suggests that GRO J1655-40 and
GRS 1915105 are spinning at a rate close to the max-
imum theoretical limit (Cui, Zhang & Chen 1998). The
iron Ko emission line in the active galaxy MCG-6-30-
15 (Bromley, Miller, & Pariev 1998) furnishes further
-evidence that (rotating) black holes are at the center
of active galactic nuclei.

Historically, the canonical astrophysical scenario in
which matter is accreted in a non-spherical way by a
compact object was suggested by Hoyle & Lyttleton
(1939) and Bondi & Hoyle (1944). This will be re-
ferred to as the Bondi-Hoyle-Lyttleton accretion onto
a Schwarzschild black hole. Using Newtonian gravity
these authors studied the accretion onto a gravitating
point mass moving with constant velocity through a
nonrelativistic gas which is at rest and has a uniform
density at infinity. Since then, this pioneering analytic
work has been numerically investigated, for a finite size
accretor, by a great number of authors over the years
(see, e.g., Font & Ibdifiez 1998a, for an up-to-date ref-
erence list).

In a series of papers (Font & Ibdfez 1998a, 1998b;
Font, Ibafiez & Papadopoulos<1998, 1999) the authors
have made an extensive numerical study of the re-
lativistic extension of the Bondi-Hoyle-Lyttleton sce-
nario. In particular, in Font, Ibanez & Papadopoulos
(1998, 1999) a detailed analysis is made of the mor-
phology and dynamics of the flow evolving in the equa-
torial plane of a Kerr black hole. The analysis made is
novel in its use of the Kerr-Schild (KS) coordinate sys-
tem, which is the simplest within the family of horizon
adapted coordinate systems, introduced in Papadopou-
los & Font(1999) where all fields, i.e., metric, fluid and .
electromagnetic fields are free of coordinate singulari-
ties at the event horizon. This procedure allows to per-
form accurate numerical studies of relativistic accretion
flows around black holes since it is possible to extend
the computational grid inside the black hole horizon.
A HRSC technique (which makes use of a linearized
Riemann solver) has been used to solve system (22) in
Boyer-Lindquist (BL) and also KS coordinates. In BL.
coordinates, for a near-extreme Kerr black hole, the
shock wraps many times before reaching the horizon
due to coordinate effects. This is a pathology of the BL
system associated to the collapse of the lapse function
at the horizon. The wrapping in the shock wave has an
important and immediate consequence: its computa-
tion in BL coordinates, although possible in principle,
would be much more challenging than in KS coordi-
nates, and the numerical difficulties would increase the
closer to the horizon one would impose the boundary
conditions in the BL framework.

Finally, in Brandt et al. (2000) we make some stud-
ies of the spherical and axisymmetric accretion onto a
dynamic black hole, the fully dynamical evolution of
imploding shells of dust with a black hole, the evolu-
tion of matter in rotating spacetimes, the gravitational
radiation induced by the presence of the matter fields
and the behavior of apparent horizons through the evo-
lution.

1V.4.- General Relativistic Stellar -Core Collapse

In the case of spherically symmetric spacetimes the
general relativistic equations can be given in a simple
way which resembles the Newtonian hydrodynamics.
To this aim the choice of coordinates is crucial. The use
of Schwarzschild-type coordinates (Bondi 1964) leads
to a simple general relativistic extension of the Eule-
rian Newtonian hydrodynamics. In terms of slicing of
space-time, Schwarzschild-type coordinates are the re-
alization of a polar time slicing and radial gauge (see
Gourgoulhon 1991).

We have studied (Romero et al. 1996) the general-
relativistic spherically symmetric stellar core collapse,
paying particular attention to the numerical treatment
of the formation and propagation of strong shocks (in
the framework of the so-called prompt mechanism of
type II Supernova) extending HRSC techniques to the
general-relativistic hydrodynamic equations. Details
on the particular equations to be solved can be found
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in the above reference. A very simple way of mod-
elling the essential features of the stellar core collapse
of massive stars is to incorporate a simple equation of
state like that of an ideal gas, but taking an adiabatic
exponent, I', which depends on the density according
to:

[ = Tpin + nllogp —log ps) (32)

with 7 = 0 if p < pp and 1 > 0 otherwise (van Riper
1979). In Romero et al. (1996) we have considered
the collapse of a white dwarf-like configuration, with a
gravitational mass of 1.3862 M, and two sets of values
for the parameters I'yin, 7 and pp: {1.33, 1, 2.5x 10
gem™3 } (model A) and {1.33, 5, 2.5x10% gem™? }
(model B).

The following main results obtained by Romero et
al. (1996) merit to be pointed out: i) The formation
and evolution of a shock is sharply solved in one or
two zones and is free of spurious oscillations. ii) The
conservative features of the code, consistent with the
conservation laws of baryonic mass and gravitational
mass (or binding energy).

Let me draw the reader’s attention towards a re-
cent paper by Dimmelmeier, Font & Miiller (2001)
where, for first time, the authors make use of HRSC
techniques for evolving matter in a dynamical space-
time described assuming the so-called conformal flat-
ness condition. The authors make an exhaustive anal-
ysis of the gravitational waveforms generated during
axisymmetric relativistic rotational core collapse. This
work is an important step towards further studies of
fully multidimensional general-relativistic stellar core
collapse.

Astrophysical applications using the characteristic
formulation of general relativity and hydrodynamics
(Papadopoulos & Font, 2000) in investigations of col-
lapse of supermassive stars and gravitational waves
from accreting black holes can be found in Linke et al.
(2001) and Papadopoulos & Font (2001), respectively.
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