• Title/Summary/Keyword: Ride and Handling

Search Result 63, Processing Time 0.027 seconds

Ride Quality of a Heavy Duty Truck on a Single Bump Road (범프로드에서의 대형트럭 승차감 평가)

  • 강희용;양성모;김봉철;윤희중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • When it is considered that many vehicle rides on the road and ride quality is an important method to evaluate vehicle performance with handling, running-over-bump manoeuvre may be suitable for testing ride quality. In this paper, a computed model has roughly steering system and lumped mass, connected by joint each rigid body, and suspension that has beam elements and has shock absorber as force element to represent nonlinear characteristics. A computer simulations for passing over a bump were made with two velocities. One side of vehicle passed over bump in due consideration of driver's habit that driver is subject to avoid a bad ride quality. On simulation, vertical acceleration, pitch angle and roll angle were measured at the mass center of chassis each case.

  • PDF

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Design of a Disturbance Observer based Control System to Ensure Robust Stability of Quarter-Car Suspensions (1/4 차량 현가 장치의 강인 안정성을 보장하는 외란관측기 기반의 제어 시스템 설계)

  • So, Sang Gyun;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.995-1001
    • /
    • 2016
  • The vehicle suspension system plays a very important part related with vehicle ride and handling. To improve the vehicle ride and handling many researches have been progressed from various damping parameter tuning techniques to the development of the electronic controlled suspension systems. In this paper, as one of the ride performance improvement a disturbance observer(DOB) based control system is applied to the quarter car vehicle model in order to show that the DOB can obtain good vibration isolation characteristics. First, the robust stability criterion for the DOB is introduced in detail, and then how DOB is applied to the 1/4 car vehicle model is represented, and finally to confirm the effectiveness of the DOB in vehicle ride performance improvement a computer simulation is carried out for various driving conditions.

Development of Objective Vehicle Ride Index (차량 승차감 평가지수 개발에 관한 연구)

  • 장한기;김승한;정용현;장진희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.450-454
    • /
    • 2001
  • The aim of the study is to develope an objective index for the evaluation of vehicle ride comfort using the measured vehicle accelerations. The equation of the index was derived from the correlation analysis of subjective ratings on selected vehicles and the reduced measure of the vehicle motions. First whole procedure of from the measurements to the calculation of the perceptual vibration was developed. Test condition of both the vehicle speed and the road condition was selected so as to maximize the reliability of the index. This paper suggested the equation of the objective ride index on vibration harshness, of which expected error is about 0.3 in 10 scale of subjective rating at 95% of the significance level.

  • PDF

Study on the Effect of the Payload and Weight Position on the Handling and Ride Comfort of a Truck (트럭의 화물적재량과 적재위치가 조안성 및 승차감에 미치는 영향에 관한 연구)

  • Cha, Hyun-Kyung;Choi, Gyu-Suk;Sohn, Jeong-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • In this paper, the payload condition is considered and computer simulation is carried out to analyze the dynamic behavior of the middle-sized truck under the condition with different weight and location. The computer model for the truck is established and ADAMS/Car is employed to simulate the truck vehicle. A single lane change and bump-pass simulation are performed to evaluate the performance according to the weight and the position of it. Effects of the location and weight of commercial vehicle are analyzed. According to the simulation results, the front deck is preferred as the load location.

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF

A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance (연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석)

  • 소상균;조경일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.