• Title/Summary/Keyword: Ride Comfort

Search Result 374, Processing Time 0.031 seconds

A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles (인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구)

  • Kim, Y.R.;Park, C.;Wang, G.N.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

Analysis on Safety and Ride Comfort of KTX According to Track Surface (고저틀림에 따른 KTX 주행거동 특성 분석)

  • Choi, Il-Yoon;Koo, Dong-Hoe;Hwang, Seok-Yeol;Lim, Yun-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.583-588
    • /
    • 2010
  • Track irregularities is one of key factors influencing running behavior of train. In order to ensure safety and ride comfort, it is highly important that relationship between track irregularity and running behavior of vehicle is identified and the criteria for track irregularities is adequately established. Numerical analysis was conducted to investigate influence of surface on running behavior of KTX and various wavelength and amplitude of surface were considered in numerical analysis. Derailment, lateral load, bogie acc., body acc. of numerical analysis results were investigated to evaluate the effect on track profile on safety and ride comfort of KTX.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies (차체의 유연성을 고려한 고속철도 차량 승차감 해석)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Koo, Ja-Choon;Lee, Sang-Won;Lee, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • In the development of high-speed trains, ride comfort is an important factor that determines the quality of the train. In this study, the ride comforts of high-speed trains with rigid and flexible car bodies were evaluated. The rail irregularity is used as an exciting source of the car-body bounce motion. The complex extruded structures of the car-body are modeled as shell structures using the calculated equivalent stiffness of the flexible model. The numerical results show that the ride of the rigid-body model improves as the speed increases, which is unreasonable. In contrast, the relationship between ride comfort and speed in the case of flexible-body model is reasonable. Thus, it is confirmed that the flexibility of the car body needs to be taken into consideration while fabricating a high-speed train.

Discussion for Ride Evaluation of High Speed Train by Using Inferential Statistics (추리통계학을 이용한 고속철도 승차감 평가에 대한 고찰)

  • Hwang, Hee-Soo;Kim, Seog-Won;Park, Chan-Kyeong;Mok, Jin-Yong;Kim, Ki-Hwan;Kim, Young-Guk
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2008
  • The ride comfort is more important according to train speedup. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But the ride comfort for Korean high speed train (HSR 350x) has been assessed by statistical method according to UIC 5l3R. In this paper, the ride indices, which were measured in the Korean high speed train. have been analyzed and reviewed by using the inferential statistics such as t-test, variance analysis (ANOVA) and regression analysis.

Development of Objective Vehicle Ride Index (차량 승차감 평가지수 개발에 관한 연구)

  • 장한기;김승한;정용현;장진희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.450-454
    • /
    • 2001
  • The aim of the study is to develope an objective index for the evaluation of vehicle ride comfort using the measured vehicle accelerations. The equation of the index was derived from the correlation analysis of subjective ratings on selected vehicles and the reduced measure of the vehicle motions. First whole procedure of from the measurements to the calculation of the perceptual vibration was developed. Test condition of both the vehicle speed and the road condition was selected so as to maximize the reliability of the index. This paper suggested the equation of the objective ride index on vibration harshness, of which expected error is about 0.3 in 10 scale of subjective rating at 95% of the significance level.

  • PDF

A Study on the Evaluation of Ride Comfort using Human Model (인체모델을 사용한 승차감의 정량적 평가에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • Vibrations on the floor in a car are transmitted to the foot, hip, and back from the seat. Human body recognizes these vibrations, but the sensitivity for each vibration is different. To evaluate these vibrations, RMS(root mean square) of accelerations, VDV(vibration does value) are commonly used. The ride comfort evaluation is usually carried out by experiments of real cars which are expensive. The purpose of this paper is to briefly review the status of several ride vibration standards and criteria having relevance to construction machinery vehicles and to suggest recommendations for the effective use of such criteria in vehicle / component development.

Evaluation Method of Riding Comfort of Train by using HRV (Heart Rate Variability) (심전도를 이용한 열차 승차감 평가 방법 연구)

  • Song, Yong-Soo;Kim, Baek-Hyun;Kim, Yong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1017-1025
    • /
    • 2010
  • The Purpose of this paper is to characteristics and analysis of ride comfort by using HRV. Although the riding comfort of trains has been managed by setting allowable accelerations of 3-axis motion in cabins, it is impossible for this approach to express the psychophysical relationship between various vibrational factors and riding comfort. in order to propose a function to evaluate the riding comfort of train on conventional railroad, an experiment was performed with the Korea Tilting Tran eXpress(TTX). As a result, by referring to some international standards on the method of evaluating ride comfort, a modified method was proposed to evaluate the lateral vibration in addition to the roll motion on carve transitions.

  • PDF

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF