• Title/Summary/Keyword: Rice hull biochar

Search Result 12, Processing Time 0.02 seconds

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.

Application of major plant nutrient releasing model and N2O emissions to the leachate from the mixtures of rice hull biochar and organic fertilizer materials (왕겨 바이오차와 유기농자재 혼합에 따른 주요 양분 용출 모델 적용 및 N2O 배출량 산정)

  • DongKeon Lee;JaeLee Choi;ChangKi Shim;JooHee Nam;SeokIn Youn;JeongSeok Song;Dogyun Park;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • This batch experiment evaluated the impacts of major plant nutrient releases by applying the modified Hyperbola model on the leachates and N2O emissions from incorporated rice hull biochar with organic fertilizer materials. The treatments consisted of the control as incorporated with organic fertilizer materials, the incorporated rice hull biochar with organic fertilizer materials, and the incorporated plasma-activated rice hull biochar with organic fertilizer materials under redox conditions. The results indicated that the maximum release amount of NH4-N was 3486.3 mg L-1 in the control, and their reduction rates of NH4-N, NO3-N, PO4-P, and K were 8.0%, 17.5% 44.3.0% and 8.7%, respectively, relative to the control. In the control, the highest soluble amount of PO4-P was 681.0 mg L-1. The estimations for accumulated NH4-N, NO3-N, PO4-P, and K-releases in all the treatments were significantly (p<0.01) fitted with a modified Hyperbola model. For greenhouse gas emissions, the lowest cumulative N2O was 340.4 mg kg-1 in the soil incorporated with plasma-activated rice hull biochar, and the reduction rates were 27.8% and 86.4% in the rice hull biochar and plasma-activated rice hull biochar treatments, respectively, compared to the control. Therefore, it concluded that the incorporated rice hull biochar can be especially useful for controlling PO4-P release and N2O emissions for bio-fertilizer applications.

Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure (왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성)

  • Ro, YeonHee;Chung, WooJin;Chung, SeokJoo;Jung, InHo;Na, HongSik;Kim, MinSoo;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

Major plant nutrient-releasing patterns in the leachates from the soil incorporated rice hull biochar adjusted pH with dry fish powder (산도를 조절한 왕겨 바이오차와 어분 혼합물을 처리한 토양 침출수의 양분용출 패턴)

  • Jae-Lee Choi;DongKeon Lee;MinJeong Kim;JooHee Nam;ChangKi Shim;SeungGil Hong;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2023
  • This batch experiment was conducted to investigate the patterns of major plant nutrients in the leachates from the soil that was incorporated with rice hull biochar adjusted pH with dry fish powder utilizing rice hull biochar for loading the soil microorganisms. The rice hull biochar adjusted pH between 6.0 and 7.0, and the mixture ratio of rice hull biochar and dry fish powder was 4:6. The treatments consisted of three; the soil incorporated with rice hull biochar non-adjusted pH with dry fish powder as control (RB + DF), the soil incorporated with rice hull biochar adjusted pH by pyroligneous acid solution and dry fish powder (RBP+DF), and the soil incorporated with rice hull biochar adjusted pH by citric acid solution and dry fish powder (RBC+DF). NH4-N, NO3-N, PO4-P, and K concentrations in the leachates were analyzed during incubation. The accumulated NH4-N and PO4-P concentrations in the leachates from the RBC+DF treatment were the highest during leaching periods. The highest accumulated NO3-N and K concentrations in the leachates from the RBP+DF treatment were observed. It observed that NH4-N and PO4-P were more released in the adjusted citric acid solution, but NO3-N and K were less released than those in the pyroligneous acid solution due to their low absorption capacity. Furthermore, it is necessary to investigate crop growth responses to the soil incorporated with adjusted pH rice hull biochar and dry fish powder for loading soil microorganisms.

Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil

  • Choi, Yong-Su;Kim, Sung-Chul;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics and kinetic models of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. $NH_4-N$ concentration was analyzed by UV Spectrophotometer. For the experiment, the soil texture used in this study was sandy loam soil, and application rates of chemical fertilizer and pig compost were $420-200-370kgha^{-1}$ (N-P-K) and $5,500kgha^{-1}$ as recommended amount after soil test for corn cultivation. Biochar treatments were 0.2-5% to soil weight. Its adsorption characteristic was investigated with application of Langmuir isotherm, and pseudo-first order kinetic model and pseudo-second order kinetic model were used as kinetic models. Adsorption amount and removal rates of $NH_4-N$ were $39.3mg^{-1}$ and 28.0% in 0.2% biochar treatment, respectively. The sorption of $NH_4-N$ to biochar was fitted well by Langmiur model because it was observed that dimensionless constant ($R_L$) was 0.48. The maximum adsorption amount ($q_m$) and binding strength constant (b) were calculated as $4.1mgg^{-1}$ and $0.01Lmg^{-1}$ in Langmuir isotherm, respectively. The pseudo-second order kinetic model was more appropriate than pseudo-first order kinetic model for high correlation coefficient ($r^2$) of pseudo-second order kinetic model. Therefore, biochar produced from rice hull could reduce $N_2O$ by adsorbing $NH_4-N$ to biochar cooperated in sandy loam soil.

Rice Yield Response to Biochar Application Under Different Water Managements Practices

  • Jung, Won-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.16-19
    • /
    • 2012
  • Increasing rice grain yield is critical for feeding rapid increasing of Asian population. However, global warming effect may be negative for sustainable rice production. Therefore it is essential to develop technologies not only for increasing grain yield but also for reducing global warming effect. Biochar, which is carbonized biomass, has a great potential of carbon sequestration and soil quality improvement, which can contribute grain yield increasing. In this study, rice yield responses to biochar application on the rice cropping system were evaluated with field experiments under different water management practices at the research farm of the University of Missouri-Columbia Delta Research Center, Portageville, MO. Biochar (i.e., $4Mg\;ha^{-1}$) was produced using field scale pyrolyzer and incorporated into the field 4 months prior to planting. Rice was grown under three different water management practices. Result showed that no significant yield difference was found in the biochar application plots compared to rice hull and control plots from the 2 years field study at the very fertile soil. However, rainfed management results in severe reduction of yield. Research concludes that the biochar application does not significantly influence on rice yield increasing especially for very fertile soils.

Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar (왕겨 바이오차의 암모늄태 질소(NH4-N) 흡착 특성)

  • Choi, Yong-Su;Shin, Joung-Du;Lee, Sun-Il;Kim, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • BACKGROUND: Objective of this study was to investigate adsorption characteristics of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. METHODS AND RESULTS: $NH_4-N$ concentration was analyzed by UV spectrophotometer. For adsorption experiment of $NH_4-N$ to biochar, input amount of biochar was varied from 0.4 to 10 g/L with 30 mg/L $NH_4-N$ solution. Its adsorption characteristic was investigated with application of Langmuir isotherm. Adsorption amount and removal rates of $NH_4-N$ were decreased at 53.9% and increased at 20.2% with 10 g/L compared to 0.4 g/L, respectively. The sorption of $NH_4-N$ to biochar produced from rice hull was fitted well by a Langmuir model. The largest adsorption amount of $NH_4-N$ ($q_m$) and binding strength constant (b) were calculated as 0.4980 mg/g, and 0.0249 L/mg, respectively. It was observed that dimensionless constant ($R_L$) was 0.58. CONCLUSION: It was indicated that biochar produced from rice hull is favorably absorbed $NH_4-N$, because this value lie within 0< $R_L$ <1.

Evaluation of ammonia (NH3) emissions from soil amended with rice hull biochar

  • Park, Seong-Yong;Choi, Ha-Yeon;Kang, Yun-Gu;Park, Seong-Jin;Luyima, Deogratius;Lee, Jae-Han;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1049-1056
    • /
    • 2020
  • Ultrafine dust causes asthma and respiratory and cardiovascular diseases when inhaled. Ammonia (NH3) plays a big role in ultrafine dust formation in the atmosphere by reacting with nitrogen oxides (NOx) and sulfur oxides (SOx) emitted from various sources. The agricultural sector is the single largest contributor of NH3, with the vast majority of emissions ensuing from fertilizers and livestock sector. Interest in using biochar to attenuate these NH3 emissions has grown. This experiment was conducted to study the effects of using rice hull biochar pyrolyzed at three different temperatures of 250℃ (BP 4.6, biochar pH 4.6), 350℃ (BP 6.8), and 450℃ (BP 10.3) on the emission of ammonia from soil fertilized with urea. The emissions of NH3 initially increased as the experiment progressed but decreased after peaking at the 84th hour. The amount of emitted NH3 was lower in soil with biochar amendments than in that without biochar. Emissions amongst biochar-amended soils were lowest for the BP 6.8 treatment, followed in an ascending order by BP 10.3 and BP 4.6. Since BP 6.8 biochar with neutral pH resulted in the lowest amount of NH3 emitted, it can be concluded that biochar's pH has an effect on the emissions of NH3. The results of this study, therefore, indicate that biochar can abate NH3 emissions and that a neutral pH biochar is more effective at reducing gaseous emissions than either alkaline or acidic biochar.

Reduction of Carbon Dioxide and Nitrous Oxide Emissions through Various Biochars Application in the Upland (밭 토양에서 다양한 바이오차 시용에 따른 이산화탄소 및 아산화질소 감축효과)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jung, Hyun-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2018
  • Biochar is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after various biochars addition. The biochars were produced by pyrolysing pear branch, rice hull and bean straw at $400{\sim}500^{\circ}C$. The treatments were consisted of a control without input of biochar and three type biochars input as 5.0 Mg/ha. Emissions of $CO_2$ and $N_2O$ from upland soil were determined using closed chamber for 8 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were 207.1 to $255.2g\;CO_2/m^2$ for biochar input treatments and $258.6g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was slightly decreased in biochar input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $2,890.6mg\;N_2O/m^2$ for control, 379.7 to $525.2mg\;N_2O/m^2$ for biochar input treatment at the end of experiment. All biochar treatments were found to significantly reduce $N_2O$ emission by 82~87%. Consequently the biochar from byproducts such as pear branch, rice hull and bean straw could suppress the soil $N_2O$ emission. The results from the study imply that biochar can be utilized to reduce greenhouse gas emission from the upland field.