• Title/Summary/Keyword: Rice field

Search Result 2,202, Processing Time 0.034 seconds

Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops (식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과)

  • Jung, In Hong;Park, No Bong;Kim, Sang-Yeol;Na, Young-Eun;Kim, Soon-Il
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.380-391
    • /
    • 2014
  • Plants as well as crops are damaged by a combination of the hot and dry winds that has been a major factor in the reduction of crop production. A means to protect them from damaging conditions is to consider a coating material. In this study, we established laboratory screening methods to find a coating material to protect a crop from rapid transpiration caused by various factors. In a test measuring the weight loss of kidney bean seedlings for 6 days, Avion treatments decreased its weight loss (P=0.05). Owing to long-time spend in completing this assay, we performed a more simple method using a cobalt chloride paper strip, which changes from blue to red colors under water condition. Beewax, guagum, paraffin liquid, soybean oil, and PE-635 gave a waterproofing effect above 37 and 43% at 0.5 and 1 h after treatment, respectively. However, these tested materials did not show significant waterproofing results at 2 h. Although the methods produced reasonable results, a screening method to obtain more objective data is needed. An alternative is to use an instrument that can detect the transpiration of crop leaves. In a preliminary test using barley leaves, a portable photosynthesis system showed transpiration inhibition of 2% soybean oil and 10 times-diluted Avion under field conditions. In another test using the leaves of maize seedlings and apricot tree, 2% liquid paraffin and plant oils such as apricot oil, linseed oil, olive oil, and soybean oil showed significant transpiration inhibition (P=0.05). Especially, paraffin liquid and soybean oil selected from above tests gave good transpiration inhibitory effects against rice at 2%. In addition, the mixture of 2% soybean oil and a spreader showed more elevated inhibition results comparing with soybean oil or the spreader alone indicating that the spreader may be attributed to more uniform diffusion of the hydrophobic material onto the leaf surface of maize seedlings. The hydrophobic material coated physically the stomata and cuticle layers on leaf surfaces of rice. These hydrophobic materials screened in this study are expected to be used as plant coating materials.

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Effects of Diffusibility of Bubbling Tablet Herbicide Formulations for Paddy Rice (수도용 발포성정제 제초제의 확산성에 미치는 영향)

  • Kim, Man-Ho;Ryang, Kwang-Rok;Lee, Chang-Hyeuk;Shim, Jae-Weon;Kim, Kyung-Hyun;Yoon, Cheol-Su;You, Yong-Man;Pyon, Jong-Yeong
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.401-410
    • /
    • 2005
  • A series of studies involving formulation processes, bubbling activity test, diffusibility test and biological efficacy test was undertaken to develop Jumbo herbicide formulations in paddy rice field. Gas evolution speed from the tablets prepared by different organic acids was in the order of oxalic acid, malonic acid, citric acid, and tartaric acid. The total volume of evolved gas from the tablet and diffusibility of the active ingredient in the submerged water were increased with increase of water temperature; the volume from 1 g of tablet at 10, 15, 25 and $30^{\circ}C$ for 5 minutes after immersion into water was 20, 25, 28, 45, 57 mL, respectively. The concentration of halosulfuron-methyl and pyriminobac-methyl in submerged water at 5, 15, 20 and $30^{\circ}C$ at the 2.4 m distance from the applied spot of the tablet was 20, 48, 85, and 97% of the concentration of treated spot, respectively. The evolved gas volume from the tablets was not affected by pH of submerged water. The concentration of halosulfuron-methyl in different sizes of submerged water within 24 hours after treatment of the tablet was maintained 0.16 ppm, which is ideal concentration at standard dosage regardless of the submerged water area. The concentration of pyriminobac-methyl was also uniformly dispersed in the water within 24 hours after applying it into the submerged water. The wind velocity of 5 m $sec^{-1}$ on concentration distribution of halosulfuron-methyl and pyriminobac-methyl in the submerged water 24 hours after treatment was not influenced; an equal concentration in the up the wind and down the wind from the applied spot was maintained. Spot treatments of one tablet formulations(5 g) including 4 times higher dosage at 4 different spots resulted in even concentration distribution of active ingredient in the water 24 hours after applying it into the submerged water.

Studies on the Characteristics of Germination and Emergence of Tall Panicum(Panicum dichotomiflorum Michx.) (미국개기장(Panicum dichotomiflorum)의 발아(發芽) 및 출아(出芽) 특성(特性)에 관한 연구(硏究))

  • Kim, M.;Shim, S.I.;Lee, S.G.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.146-153
    • /
    • 1998
  • This experiment was conducted to clarify the characteristics of germination and emergence of Panicum dichotomiflorum which is a noxious weed species in direct-seeded rice field. P. dichotomiflorum was planted with several treatments such as different depths of irrigation to verifiy the ecological habits of seedling emergence and growth. In order to know the germination characteristics, Panicum dichotomiflorum seeds, pretreated with low-temperature($4^{\circ}C$) stratification for breaking the dormancy, were germinated under different temperature regimes and water potentials. Germination rates of P. dichotomiflorum was increased from 0% of dormant seed to 1%, 35% and 44% by stratification for 21, 28 and 42 days, respectively. Two dominant weed species in directseeded rice fields, Echinochloa crus-galli and Panicum dichotomitlorum, showed different germination habit under different temperature regimes. Echinochloa crus-galli showed more higher germination rate than Panicum dichotomiflorum at relatively low temperature regime(20/$10^{\circ}C$). Both species germinated faster at 30/$20^{\circ}C$ than at 20/$10^{\circ}C$. When the water potential was lowered, germination of Panicum dichotomiflorum was reduced more drastically than Echinochloa crus-galli. The critical water potential for germination of P. dichotomiflorum was -0.7MPa but Echinochloa crus-galli was affected slightly by the same water potential. The results showed that Echinochloa crus-galli can germinate under more wide range of soil water potential than Panicum dichotomiflorum. Emergence of P. dichotomiflorum was highly affected by irrigation depth and the level of water table. When the depth of irrigation water was increased, emergence of P. dichotomiflorum was dragged and emergence rate showed significant difference under the irrigation depth deeper than 6cm. The maximum depth of irrigation water for survival of Panicum dichotomiflorum seedling was 9cm.

  • PDF

Application Rate Modification of Paddy Herbicide Quinclorac Depending on Different Cultural Patterns (벼 작부양식(作付樣式)의 차이(差異)에 따른 제초제(除草劑) QUINCLORAC 의 선택활성(選擇活性) 변동(變動))

  • Guh, J.O.;Im, W.H.;Han, S.U.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 1992
  • Not only reducing the carry-over effects of quinclorac [3, 7-dichloro-8-quinoline carboxylic acid] used in paddy field to some following vegetable crops but also rationalizing agro-ecology conservation and farm economy, the reducing feasibility of application rates by various cropping patterns and application timing after rice seeding and transplanting. Four cropping patterns namely dry direct seeding(DDS), flooded direct seed(FDS), transplanting of 8 days old early seedlings(EST) and 25 days old machinery seedling(MST) were experimented with 7 application timings as 0, 5, 10, 15, 20, 25, 30 days after seeding/transplanting and 9 levels of application rates as 0, 75, 150, 225, 300, 375, 450, 525, and 600g ai/ha of the chemical, respectively. Within the maximum permitted limit of rice phytotoxicity, the minimum application rate of quinclorac to complete control of Echinochloa crus-galli as influenced by various cropping patterns with application timing could be evaluated as follows : A. Dry direct seeding : The minimized application rate at application timing upto 10 days after seeding (DAS) was counted 150g ai/ha, and delaying upto 15-30 DAS, the rates were increased upto 225-525g ai/ha. B. Flooded direct seeding and transplanting : The application rates were minimized 75g ai/ha at application timing upto 10 days after seeding/transplanting(DAS/T), 150g ai/haupto 15 DAS/T, and 225g ai/ha at later than 20 DAS/T, respectively.

  • PDF

A Study on the Application of IUCN Global Ecosystem Typology Using Land Cover Map in Korea (토지피복지도를 활용한 IUCN 생태계유형분류 국내 적용)

  • Hee-Jung Sohn;Su-Yeon Won;Jeong-Eun Jeon;Eun-Hee Park;Do-Hee Kim;Sang-Hak Han;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • Over the past few centuries, widespread changes to natural ecosystems caused by human activities have severely threatened biodiversity worldwide. Understanding changes in ecosystems is essential to identifying and managing threats to biodiversity. In line with this need, the IUCN Council formed the IUCN Global Ecosystem Typology (GET) in 2019, taking into account the functions and types of ecosystems. The IUCN provides maps of 10 ecosystem groups and 108 ecological functional groups (EFGs) on a global scale. According to the type classification of IUCN GET ecosystems, Korea's ecosystem is classified into 8 types of Realm (level 1), 18 types of Biome (level 2), and 41 types of Group (level 3). GETs provided by IUCN have low resolution and often do not match the actual land status because it was produced globally. This study aimed to increase the accuracy of Korean IUCN GET type classification by using land cover maps and producing maps that reflected the actual situation. To this end, we ① reviewed the Korean GET data system provided by IUCN GET and ② compared and analyzed it with the current situation in Korea. We evaluated the limitations and usability of the GET through the process and then ③ classified Korea's new Get type reflecting the current situation in Korea by using the national data as much as possible. This study classified Korean GETs into 25 types by using land cover maps and existing national data (Territorial realm: 9, Freshwater: 9, Marine-territorial: 5, Terrestrial-freshwater: 1, and Marine-freshwater-territorial: 1). Compared to the existing map, "F3.2 Constructed lacustrine wetlands", "F3.3 Rice paddies", "F3.4 Freshwater aquafarms", and "T7.3 Plantations" showed the largest area reduction in the modified Korean GET. The area of "T2.2 Temperate Forests" showed the largest area increase, and the "MFT1.3 Coastal saltmarshes and reedbeds" and "F2.2 Small permanent freshwater lakes" types also showed an increase in GET area after modification. Through this process, the existing map, in which the sum of all EFGs in the existing GET accounted for 8.33 times the national area, was modified so that the total sum becomes 1.22 times the national area using the land cover map. This study confirmed that the existing EFG, which had small differences by type and low accuracy, was improved and corrected. This study is significant in that it produced a GET map of Korea that met the GET standard using data reflecting the field conditions. 

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Effect of Cultivation Using Plastic-Film House on Yield and Quality of Ginseng in Paddy Field (논토양에서 비닐하우스를 이용한 재배방법이 인삼의 수량 및 품질에 미치는 영향)

  • Kim, Dong Won;Kim, Jong Yeob;You, Dong Hyun;Kim, Chang Su;Kim, Hee Jun;Park, Jong Suk;Kim, Jeong Man;Choi, Dong Chil;Oh, Nam Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2014
  • The average and maximum temperature were $29.5^{\circ}C$ and $33.2^{\circ}C$ at 2:00 p.m. respectively, in the plastic-film house covered with shade net, and both of temperature were lower $0.6^{\circ}C$ and $1.3^{\circ}C$ than those of conventional shade. Light transmittance was 14% in the plastic-film house, while 9.9% in conventional shade during growing season from May to October. Withering time of aboveground part was on October 3rd in conventional shade with 60% of withering leaf, while it was on November 10th with 3.7% of withering leaf in the plastic-film house, about 40 days longer survival. The main disease incidence were 15% of anthracnose, 17% of leaf spot, 5% of phytophthora blight and 3% of gray mold in the conventional shade, while 0 ~ 0.1% disease incidence and 95% of emergence rate in the plastic-film house. The growth in the aboveground and underground part of ginseng was totally better, particularly characteristics affecting yield such as root length, main root length and diameter in the plastic-film house. The fresh weight was increased by 128% compared to the conventional shade and harvested roots per $3.3m^2$ were 36 roots in the conventional shade and 58 roots in the plastic-film house and futhermore yield per $3.3m^2$ was increased by 216% compared to the conventional shade. As covering materials, the rice straw in the plastic-film house was excellent. The ginsenoside contents affecting the quality of ginseng were higher in the plastic-film house indicating 0.333% of Rg1, 0.672% of Rb1, 0.730% of Rc and rate of red rusty root was less than 4.0 ~ 6.1%. Above the results, the quality of ginseng grown in the plastic-film house covered with shade net was improved than that of the conventional shade.

Recommendations of NPK Fertilizers based on Soil Testing and Yied Response for Carrot in Highland (고랭지 당근재배지의 토양검정에 의한 NPK 시비기준량)

  • Lee, Gye-Jun;Lee, Jeong-Tae;Zhang, Yong-Seon;Hwang, Seon-Woong;Park, Chol-Soo;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.467-471
    • /
    • 2009
  • An attempt was made to provide the most resonable fertilizer recommendation for carrot crop based on soil analytical data and yield response to the NPK fertilizers, which was obtained from field experiments on 2003 in highland, 850 meters above the sea level. Optimum times of N, P, K application to current application methods based on soil test were 0.75-0.50-0.50 for carrot. The adjusted N, P, K recommendation models of highland soil were made by adding the application times to past application methods which were based on chemical properties of soil. The revised models for fertilizer application were recommended to decrease the amount of N-P-K by 25-50-50% for carrot in highland. In application to total cultivation area, 135ha for carrot, saving amounts of NPK fertilizers with these adjusted recommendation in comparison with past application levels will be 23.0 tons for carrot. Using the optimal application amounts for carrot, we will can reduce agricultural pollution without affecting crop yields.

QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J.;Chakraborty, N.;Chang, S.;Jung, G.
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.