• Title/Summary/Keyword: Rice bakanae disease

Search Result 46, Processing Time 0.029 seconds

Identification of Fusarium fujikuroi Isolated from Barnyard Grass and Possibility of Inoculum Source of Bakanae Disease on Rice (피에서 분리한 Fusarium fujikuroi의 동정 및 벼 키다리병의 전염원 가능성)

  • Choi, Hyo-Won;Lee, Yong-Hwan;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.82-85
    • /
    • 2011
  • Bakanae disease symptom were observed in barnyard grass in paddy field in Heanam, Jeonnam. The infected plants were blighted and white mass of spore were formed on the stem. Fusarium species were isolated from infected stem and the isolates were identified as Fusarium fujikuroi based on their morphological and molecular characteristics. The isolates of F. fujikuroi were assigned to reference of F. fujikuroi among related Fusarium species based on the translation elongation factor 1-alpha gene sequence. Pathogenicity of the fungal isolates was confirmed on seedlings of rice and barnyard grass by artificial inoculation. The results indicated that barnyard grass can be inoculum source of Bakanae disease on rice. Thus, effective weed management is necessary to Bakanae disease control and healthy seed production.

Effects of Seed-treatment Fungicides on Bakanae Disease of Rice

  • Park, Hyo-Won;Shim, Hong-Sik;Kim, Yong-Ki;Yeh, Wan-Hae;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.91.1-91
    • /
    • 2003
  • Bakanae disease, caused by Gibberella fujikuroi (anamorph Fusarium moniliforme J. Sheldon), a typical seed-borne disease of rice occurs from nursery to paddy fields. Consequently, chemical seed disinfectants is the most efficient control method. Several seed treatment methods with various fungicides were attempted to inhibit disease. Spray and 24 hrs immersion of seeds using prochloraz emulsion reduced disease infection and the control value were 99.3 and 100%, respectively. In contrast, dressing to wet seeds thiophanate-methyl+thiram wp and benomyl+thiram wp reduced disease infection more effectively than 24 hrs immersion of seeds. However, dressing of carpropamid+imidacloprid+fludioxonil wp to wet seeds did not reduced disease as well as wettable liquid of fludioxonil. The results suggest that the bakanae disease might be disinfected effectively by 24 hrs immersion of seeds in prochloraz emulsion and seed dressing of fungicides.

  • PDF

Establishment of Rice Bakanae Disease Management Using Slightly Acidic Hypochlorous Acid Water (미산성 차아염소산수를 이용한 벼키다리 병 방제)

  • Goo, Sung-Geun;Koo, Jachoon
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • Rice bakanae is a typical seed-borne and seed-transmitted disease caused by infection by Fusarium fujikuroi. Seed disinfection using chemical fungicides (such as benomyl and prochloraz) is most effective in controlling the disease, but the emergence of fungicide-resistant strains has recently been increasing. Slightly acidic hypochlorous acid water (SAHW) is a safe and environmentally friendly disinfectant that has a potent and broad spectrum of antimicrobial activity against viruses, bacteria, and fungi. In this study, we aimed to investigate the effectiveness of SAHW against F. fujikuroi strains, including chemical fungicide-resistant strains, as an alternative to conventional chemical fungicides in the management of bakanae disease. SAHW showed strong but similar levels of antifungal activity among the F. fujikuroi strains with a minimum inhibitory concentration (MIC90) of 5±2.5 ppm of free available chlorine (FAC). In addition, F. fujikuroi cells lost viability completely within 5 min of SAHW treatment due to the lethal damage to cell integrity. When the rice seeds infected by F. fujikuroi were treated with SAHW containing 20±10 ppm of FAC for 12 hr, the efficiencies of seed disinfection and disease control were 95-98% and 90.1-92.6%, respectively. Altogether, our data suggest that SAHW is an effective compound for controlling rice bakanae disease.

The Controlling Activity of Several Fungicides against Rice Bakanae Disease Caused by Fusarium fujikuroi in Five Assay Methods (몇 가지 살균제의 벼 키다리병과 병원균에 대한 효과 검정)

  • Shin, Myeong-Uk;Lee, Su-Min;Lee, Yong-Hwan;Kang, Hyo-Jung;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.168-176
    • /
    • 2008
  • Recently damage of rice bakanae disease disseminated by infected seeds increased in paddy field in Korea. For controlling rice bakanae disease, the efficacy of 17 fungicides was assessed by 5 kinds of bioassay, spore germination test (SGT), mycelial growth test, detection test on Komada's medium (KDT), pouch test (PT) and greenhouse test (GT). Among ergosterol biosynthesis inhibiting fungicides, prochloraz showed a high controlling activity in all the assay systems while the others showed very low activity except for $500\;{\mu}g/ml$ of hexaconazole in GT and $500\;{\mu}g/ml$ of triflumizole in KDT. Although benomyl and the mixture of benomyl and thiram showed a good activity at 100 and $500\;{\mu}g/ml$ in SGT and PT, respectively, in GT they did a middle activity. Trifloxystrobin and kresoxim-methyl included in strobilurins showed a good activity even at $20\;{\mu}g/ml$ in KDT as well as a middle activity in SGT. Also a high activity not only at $10\;{\mu}g/ml$ in SGT but also at $100\;{\mu}g/ml$ KDT was detected in thiram. The activity of fludioxonil was confirmed in SGT, KDT and PT. Based on these results, it is very important to determine a bioassay system, because the fungicidal activity against rice bakanae disease was fluctuated depending on a assay systems as well as the mechanism of fungicide.

Use of Sodium Hypochlorite for the Control of Bakanae Disease in Rice (벼 키다리병 방제를 위한 차아염소산나트륨 이용)

  • Shin, Dong Bum;Goh, Jaeduk;Lee, Bong Choon;Kang, In Jeong;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.259-263
    • /
    • 2014
  • For application of sodium hypochlorite as a seed disinfectant to the control of bakanae disease caused by Gibberella fujikuroi in rice, we investigated the effects of sodium hypochlorite for antifungal activity, eliminating fungus from seeds and reducing disease occurrence in vitro and greenhouse. The viability of the pathogen was significantly reduced at $80{\mu}l/l$ concentration of sodium hypochlorite, and the pathogens did not grow at over $100{\mu}l/l$ concentration of sodium hypochlorite. The effect of eliminating fungus was 90% at treatment of 0.3% sodium hypochlorite solution to infected rice seeds for eight hours. When the rice seeds were soaked into 0.5% and 0.3% sodium hypochlorite solutions for twelve hours, the disease incidences of rice seedling were remarkably reduced to 4.3% and 4.7%, respectively, compared to 97.3% of non-treatment control. The rates of seedling stand were 29.1% and 26.9% higher with the sodium hypochlorite treatment than that of non-treatment control. When prochloraz and sodium hypochlorite was treated to naturally severely infested rice seeds with bakanae disease, the disinfection effect was higher than that of prochloraz alone treatment. When the seeds were soaked in sodium hypochlorite before or after prochloraz, the rate of seed contamination was low as 4.0% or 6.3%, respectively, compared to prochloraz alone as 13.7%. The disease incidence was low as 3.7% or 8.3%, respectively, compared to prochloraz alone as 14.3%. The disinfection effect of treatment with prochloraz after sodium hypochlorite was higher than that of treatment with prochloraz before sodium hypochlorite.

Effect of Rice Seed Disinfection of Loess-sulfur on the Suppression of Bakanae disease caused by Fusarium fujikuroi (벼 키다리병 방제에 관한 황토유황의 종자소독 효과)

  • So, Hyun-Kyu;Kim, Yong-Ki;Hong, Sung-Jun;Han, Eun-Jung;Park, Jong-Ho;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.345-355
    • /
    • 2017
  • This study was conducted to evaluate rice seed disinfection efficacy of loess-sulfur for the suppression of Bakanae disease caused by Fusarium fujikuroi. Rice seeds were treated at different concentrations of loess-sulfur, soaking time and temperature, and combination of hot-water treatment. Rice cultivar, Shindongjin harvested from Bakanae disease-infested area in 2015, was used. Loess-sulfur was treated as follows; concentration of undiluted solution, 2%, 1% and 0.5%; soaking time of 24 and 48 hours; treatment temperature of $20^{\circ}C$ and $30^{\circ}C$; hot water treatment or not. Optimal conditions of rice seed disinfection were selected soaking time of 48 hours and the suspension of 0.5% and 1% loess-sulfur by investigating seed germination and isolation frequency of Fusarium spp. on Komada agar medium in vitro, and were established 3 disinfection conditions as hot water ($60^{\circ}C$, 10 min.) + 1% loess-sulfur ($20^{\circ}C$, 48 hours), 1% loess-sulfur only ($30^{\circ}C$, 48 hours) and 1% loess-sulfur only ($20^{\circ}C$, 48 hours) through additional test in greenhouse. Above 3 conditions were verified by rice seedling box and paddy field test in the way of investigating Bakanae diseased plants (%) and healthy plants (%). Consequently, most effective rice seed disinfection conditions on Bakanae disease were combination of hot water and 1% loess-sulfur and loess-sulfur only at $30^{\circ}C$. Furthermore, treatments with these conditions showed control value of 100% were maintained from seedling to the heading stage in the field. However, treatment of 1% loess-sulfur only at $20^{\circ}C$ showed low control value of 78.2% in paddy field. Hot water only treatment turned out to be an effective disinfection method when conducted thoroughly with $60^{\circ}C$, 10 min. However, it was thought additional soaking process with loess-sulfur after hot water treatment served more high control effect against Bakanae disease when rice seeds were disinfected on a large scale. This results expected rice seed disinfection with loess-sulfur were effectively and easily usable method if farmers had only one of either hot water-disinfector or seed-disinfector. In addition, loess-sulfur is well-known to farmers, simple to manufacture method and cheap.

Resistance of Fusarium fujikuroi Isolates to Hydrogen Peroxide and Its Application for Fungal Isolation

  • Youn, Kihoon;Choi, Hyo-Won;Shin, Dong Bum;Jung, Boknam;Lee, Jungkwan
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.227-230
    • /
    • 2015
  • The ascomycete fungus Fusarium fujikuroi causes bakanae disease in rice and this disease has been reemerging in Korea. Other fungal species including F. graminearum and Magnaporthe oryzae are often associated with F. fujikuroi, hampering pure isolation of F. fujikuroi from rice. In this study, we modified a selective medium for F. fujikuroi as supplementing both pentachloronitrobenzene and hydrogen peroxide into minimal medium. This medium efficiently suppressed the vegetative growth of F. graminearum and M. oryzae, but did not significantly reduce F. fujikuroi growth, providing an efficient tool for isolating F. fujikuroi.

The disinfective effect of garlic extract against Bakanae Disease (마늘 추출물의 벼 키다리병에 대한 종자소독 효과)

  • Sung, Chang-Keun;Choi, Ji-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • Bakanae Disease is an abnormal plant growth caused by Gibberella fujikuroi. The infected plants several inches taller than normal plants in seedbed and field. To control bakanae disease, we made a seed disinfectant from garlic extract. And we isolated allicin($C_6H_{10}OS_2$) from garlic extract and the content was 0.62%. In order to develop efftive seed disinfectant from Garlic extract, we compared it with three seed disinfectants(benomyl, prochloraz, fludioxonil). Prochloraz, fludioxonil and Garlic wettable powder controlled Bakanae disease of rice very well, while benomyl did not suppress the disease enough. Water temperature was turned to be an important factor for controlling the disease by treating seed disinfectants. It was confirmed that the seed disinfectant from garlic extract can be used as non-toxic agricultural medicines.

  • PDF

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Morphological Changes of Fungal Cell Wall and ABC Transporter as Resistance Responses of Rice Bakanae Disease Pathogen Fusarium fujikuroi CF337 to Prochloraz (세포벽의 형태학적 변화와 ABC Transporter에 기초한 벼키다리병원균 Fusarium fujikuroi CF337의 살균제 prochloraz에 대한 저항성 반응)

  • Yang, You-Ri;Lee, Si-Woo;Lee, Se-Won;Kim, In-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • BACKGROUND: The resistance of rice bakanae disease pathogens against the fungicide prochloraz has been reported. Understanding the resistance mechanisms is an important for better control of the pathogens. In the present study, we investigated the resistance mechanisms of Fusarium fujikuroi CF337 (CF337) against prochloraz. METHODS AND RESULTS: Morphological changes in the cell wall of CF337 grown in potato dextrose broth (PDB) with or without prochloraz was investigated by transmission electron microscopy. Growth inhibition of CF337 was examined in PDB containing prochloraz or an ABC transporter inhibitor or both of them. Cell wall thickness of CF337 grown in PDB with prochloraz was significantly increased from $80.73{\pm}1.99nm$ to $193.11{\pm}7.07nm$. Significant inhibition in the growth of CF337 was observed in the presence of both prochloraz and the inhibitor, but no growth inhibition was observed in the presence of the inhibitor or prochloraz. Sequence analysis of ATP-binding cassette transporter (ABC) gene of CF337 showed 70 to 80% similarities to the genes of the pathogens resistant to other fungicides. CONCLUSION: Efflux transporter system and changes in cell wall thickness were suggested as resistance mechanisms of CF337 against prochloraz.