• Title/Summary/Keyword: Rice Straw Ash

Search Result 82, Processing Time 0.029 seconds

The Study on the Pozzolanic Reactivity of Rice Straw Ash (소성볏짚의 포졸란 반응성에 관한 연구)

  • Kim, Sung-Hoon;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.36-37
    • /
    • 2015
  • The purpose of this study is to investigate pozzolanic reactivity of the rice straw ash. This study focused on rice straw ash properties at various burning temperature and duration as a mineral admixture for mortar and concrete, and provide the crystalline state and molecular structure of rice straw ash. X.R.D and N.M.R were performed on rice straw ashes to identify pozzolanic reactivity.

  • PDF

A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution (잿물로 매염처리된 소방염포의 물성에 관한 연구)

  • 주영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.6
    • /
    • pp.609-609
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution (잿물로 매염처리된 소방염포의 물성에 관한 연구)

  • 주영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.6
    • /
    • pp.699-705
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

  • PDF

An Experimental Study on Freezing and Thawing Resistance of Rice Straw Ash Concrete (볏짚재 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • 김영익;성찬용;김경태;서대석;남기성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.161-166
    • /
    • 1998
  • This experiment was on purpose to estimate freezing and thawing resistance concering with developing rice straw ash concrete which were mixed rice straw ash to cement as ratio of cement weight. Freezing and thawing test was done by Method A of KS F 2456. It could estimate change of original mass, pulse velocity and dynamic modulus of elasticity during test. Test results showed that 5% filled rice straw ash concrete had the highest durability factor(DF) as 86 and from 5% to 7.5% filled rice straw ash concrete showed higher DF than normal cement concrete.

  • PDF

Engineering Properties of Concrete with Rice-Straw Ash (볏짚재를 혼입(混入)한 콘크리트의 공학적(工學的) 성질(性質))

  • Sun, Chan Yong;Lee, Hee Man;Kim, Young Ik;Kim, Kyung Tae;Seo, Dae Seuk;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.285-292
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of concrete using normal portland cement, natural aggregates and rice-straw ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,250{\sim}2,335kgf/m^3$, the weights of those concrete were decreased 1~5% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 5% rice-straw ash filled rice-straw ash concrete, it was increased 17% by compressive strength, 30% by tensile strength and 21% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 4,059~4,360m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 5% rice-straw ash filled rice-straw ash concrete. 4. The acid-proof was increased with increase of the content of rice-straw ash. The acid-proof was increased 1.15 times by 5% rice straw ash, 1.45 times by 10%, 1.6 times by 15% rice-straw ash filled concrete than that of the normal cement concrete, respectively.

  • PDF

Experimental Study on Physical and Mechanical Properties of Eco-concrete using Rice Straw Ash (볏짚재를 활용한 에코 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 성찬용;김영익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.79-87
    • /
    • 2002
  • This study is performed to examine the physical and mechanical properties of Eco-concrete using rice straw ash for planting. The tests for void ratio, compressive and bending strength with neutralization treatment point, curing condition and coarse aggregate size are performed. The test result shows that the void ratio is decreased with increasing content of rice straw ash. But, the compressive and bending strength are increased with increasing content of rice straw ash. The greatest strength is appeared when neutralization is treated in curing age of 6 days. These Eco-concrete is very useful for planting.

Experimental Study on Development of Plantable Concrete Block Using Rice Straw Ash and Application for Inclined Plane (볏짚재를 활용한 식생콘크리트 블록 개발 및 사면 적용성에 관한 실험적 연구)

  • 성찬용;김영익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.107-114
    • /
    • 2003
  • This study was performed to develop the plantable concrete block using rice straw ash and apply for inclined plane. For the planting, plantable concrete block needs infiltration of water and air through void of block. The materials used for plantable concrete block are cement, rice straw ash, and coarse aggregate (5-10, 10-20 mm). Plantable block size is $23\times23\times4$ cm, and species of planting are Tall fescue, Lespedeza cyrtobotrya and Lespedeza cuneata. At the 6 months after seeding, germination ratio and grown-up length of Tall fescue, Lespedeza cyrtobotrya and Lespedeza cuneata are shown in 90%, 60%, 50%, and 40~50 cm, 90~120 cm, 60~75 cm, respectively.

Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding

  • Raj, Amritha;Sathyan, Dhanya;Mini, K.M.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.151-161
    • /
    • 2021
  • The major shortcoming of concrete in most of the applications is its high self-weight and thermal conductivity. The emerging trend to overcome these shortcomings is the use of foam-concrete, which is a lightweight concrete consisting of cement, filler, water and a foaming agent. This study aims at the development of a cost-effective high-volume fly-ash foam-concrete insulation wall cladding for existing buildings using natural fiber like rice straw in different proportions. The paper reports the results of systematic studies on various mechanical, acoustic, thermal and durability properties of foam-concrete with and without replacement of cement by fly-ash. Fly-ash replaces 60 percent by weight of cement in foam-concrete. The water-solid ratio of 0.3, the filler ratio of 1:1 by weight, and the density of 1100 kg/㎥ (approx.) are fixed for all the mixes. Rice straw at 1%, 3% and 5% by weight of cement was added to improve the thermal and acoustic efficiency. From the investigations, it was inferred that the strength properties were increased with fly-ash replacement up to 1% rice straw addition. In furtherance, addition of rice straw and fly-ash resulted in improved acoustic and thermal properties.

The Effect of Addition of Apple Pomace on Quality and in situ Degradability of Rice Straw Silage (사과박 첨가가 볏짚 사일리지의 품질과 in situ 소실율에 미치는 영향)

  • 조익환;황보순;이영옥;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • The quality of the rice straw silage added with apple pomace was investigated in this study and the amount of apple pomace added in different treatments were 0, 20, 40 and 60%, respectively. Crude protein contents (6.4-7.5%) of rice straw silage added with apple pomace were significantly (P<0.05) higher than that of 100%. rice straw silage (5.3%), however, crude ash contents were lower (P<0.05) in supplementation of apple pomace. The trends of changing chemical composition between raw materials and end products of silages particularly in the contents of crude protein and crude ash were more apparent in the silages added with apple pomace by 40-60%. Values of pH and the contents of lactic acid and total acid in 40-60% apple pomace added silages were 3.9-4.1, 1.0- 1.5% and 2.7-4.5%, respectively which were significantly (P<0.05) higher than those of 4.6, 0.02% and 0.34% in 100% rice straw silage, respectively. In situ dry matter (DM) and neutral detergent fiber (NDF) disappearance rates in the rumen in the treatments of 40- 60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage particularly since after 3 and 24 hour incubation on DM and NDF disappearance, respectively. Although quickly degraded fraction (a) among the treatments were not significantly different, 28.4-28.5% of slowly degraded fraction (b) and 27.2-27.4% of effective degradability (ED, k=0.08) for DM were significantly (P<0.05) higher than those of 100% rice straw silage (12.5 and 24.6% respectively). NDF was in the same trend as in DM. 31.6-63.2% of NDF for b fraction and 18.7- 19.4% for ED in 40-60% apple pomace added silages were significantly (P<0.05) higher than those of 100% rice straw silage (12.4 and 17.6% respectively). (Key words : Rice straw silage, Apple pomace, Lactic acid, In situ digestibility, Effective degradability)

  • PDF

An Experimental Study on the Engineering Properties Of Rice-Straw Ash Concrete (볏짚재를 혼입(混入)한 콘크리트의 공학적(工學的) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hee Man;Min, Jeong Ki;Kim, Young Ik;Seo, Dae Seuk;Nam, Ki Sung;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.65-70
    • /
    • 1999
  • This study is performed to evaluate the engineering properties of rice-straw ash concrete using normal portland cement, natural aggregates and rice-straw ash. The following conclusion are drawn; 1. The dynamic modulus of elasticity is in the range of $289{\times}10^3{\sim}345{\times}10^3kgf/cm^2$, which is showed about the same compared to that of the normal cement concrete. The highest dynamic modulus is showed by 5% rice-straw ash filled rice-straw ash concrete 2. The static modulus of elasticity is in the range of $268{\times}10^3{\sim}335{\times}10^3kgf/cm^2$, which is showed about the same compared to that of the normal cement concrete. The dynamic modulus is increased approximately 3~10% than that of the static modulus. 3. The poisson's number of rice-straw ash concrete is less than that of the normal cement concrete. 4. Accordingly, if we use suitable quantity of rice-straw ash as a replacement of cement, it will greatly improve engineering properties of concrete.

  • PDF