• Title/Summary/Keyword: Rice 추정량

Search Result 192, Processing Time 0.033 seconds

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner (레이저 스캐너를 이용한 벼 군락 초장 추정)

  • Dongwon Kwon;Wan-Gyu Sang;Sungyul Chang;Woo-jin Im;Hyeok-jin Bak;Ji-hyeon Lee;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

A meta analysis of the climate change impact on rice yield in South Korea (기후변화가 국내 쌀 생산량에 미치는 영향에 대한 메타분석)

  • Shin, Deok Ha;Lee, Mun Su;Park, Ju-Hyun;Lee, Yung-Seop
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.355-365
    • /
    • 2015
  • As the global climate has dramatically changed over the past decades, there has been active research on evaluating its effects on food security, which has been recognized as one of the most important issues in the field. In this study, we analyzed the impact of the climate change on the Korean agriculture using meta-analysis methods. Especially, our research focus is on estimating the effect of CO2 concentration and two adaptations (planting-date and cultivar adjustments)on rice that accounts for a larger proportion of the Korean domestic agriculture. Unlike traditional general meta-analysis methods that use summary statistics of effects of interest, meta analysis specific to the agriculture literature was conducted by integrating the data on rice yield that were generated under various CO2 emission scenarios and general circulating models of the 6 collected individual studies. As a modeling approach, the rice yield change ratio was set as the dependent variable and the main and interaction effects of CO2 concentration and adaptation were considered as independent variables in a regression model, As a result, CO2 is estimated to have opposite effects on rice yield depending on whether any of the two adaptations is applied or not; decreasing effect without adaptation and increasing effect with adaptation. In addition, it turns out that the cultivar adjustment has a higher increasing effect on rice yield than the planting-date adjustment. The results of the study are expected to be used as basic quantitative data for establishing responsive polices to the future climate changes.

Estimation of Nitrogen Uptake and Biomass of Rice (Oryza sativa L.) Using Ground-based Remote Sensing Techniques (지상 원격측정 센서를 활용한 벼의 생체량과 질소 흡수량 추정)

  • Gong, Hyo-Young;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.779-787
    • /
    • 2011
  • This study was conducted to evaluate the usefulness of ground-based remote sensing for the estimation of rice yield and application rate of N-fertilizer during growing season. Dongjin-1, Korean cultivar of rice was planted on May 30, 2006 and harvested on October 9, 2006. Chlorophyll content and LAI (leaf area index) were measured using Minolta SPAD-502 and AccuPAR model LP-80, respectively. Reflectance indices were determined with passive sensors using sunlight and four types of active sensors using modulated light, respectively. Reflectance indices and growth rate were measured three times from 29 days to 87 days after rice plating and at harvesting day. The result showed that values of growing characteristics and reflectance indices were highly correlated. Growing characteristics to show significant correlation with reflectance indices were in order of followings: fresh weight > N uptake > dry weight > height > No. of tiller > N content. Chlorophyll contents measured by chlorophyll meter (SPAD 502) showed high correlation with nitrogen concentration (r=$0.743^{**}$), although the correlation coefficients between remote sensing data and nitrogen concentration were higher. LAI was highly correlated with dry weight (r=$0.931^{**}$), but relationship between LAI and nitrogen concentration (r=$0.505^*$) was relatively low. The data of CC-passive sensor were negatively correlated with those of the near-infrared. NDVI correlation coefficients found more useful to identify the growth characteristics rather than data from single wavelength. Both passive sensor and active sensor were highly significantly correlated with growth characteristics. Consequently, quantifying the growth characteristics using reflectance indices of ground-based remote sensing could be a useful tool to determine the application rate of N fertilizer non-destructively and in real-time.

Fundamental Study on the Evapo- transaration Requirements of Patty rice Plant (벼 용수량계획상의 엽면증발량 및 주간수면 증발량에 관한 기초적인 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.2
    • /
    • pp.1651-1660
    • /
    • 1969
  • The purpose of this study is to find out the reasonable amount of evapo-transpiration required for the paddy rice plant during the whole growing season. So. On the basis of the experimental data concerning the evapo-transpiration form 1966 to 1968, the author obtained the follow results. 1) The leaf area index in the densely planted plo is generally higher than that in the conventionally planted one during the first half of growing season So, the coefficient of transpiration in the former plot is somewaht higher than in the latter, and the coefficient of water surface evaporation under the plant cover has the inverse relation between both plots. 2) It is unreasonable that coefficient of evapo-transpiration is applied to the calculation of the evapo-transpiration requirements of each growing stage, because a degree of variation in meteorological factors and in the thickness of the plant growth is involved in it. 3) It is most reasonable that the rate of transpiration and of the water surface evapoation is applied to the calculation of the transpirated amount and evaporated one in each growing stage, because it shows almost constant value in spite of any meteorological conditions in so far as the variety of rice, planted density and control of applying fertilizer are sanme and the disease and blight are negligible. 4) The ratio of the amount of transpiration to the weight of the whole air dried yields has the tendency of decreasing as that of the yields increases having almost constant value despite the amount of pan evaporation; and the value is about 210 when the weight of root parts is included to that the yields. 5) Although the required amount of transpiration during the whole growing season can be calculated with the above ratio, Fig. 7 showing the relation between the amount of transpiration and the weight of the yields is more reasonable and will be convinient to find it. And the requirements of water surface evaporation during the same season can also be directly found witht theweight air dried straw refering to Fig. 8.

  • PDF

Changes of Cold Tolerance and it Mechanisms at Young Microspore Stage caused by Different Pre-growing Conditions in Rice (벼 수잉기내냉성의 전역조건에 따른 변동과 기구)

  • 이선용;박석홍
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.394-406
    • /
    • 1991
  • It was proved that cold tolerance of rice plants at the young microspore stage was affected by water temperature and nitrogen application from the spikelet differentiation stage to the young microspore stage, and this mechanism could be explained in the point of view of pollen developmental physiology. The cold tolerance of rice plants at the young microspore stage was severely affected by water temperature (Previous water temperature) and nitrogen application(Previous nitrogen application) from the spikelet differentiation stage to the spikelet differentiation stage. Although the duration is only 10 days or so from the spikelet differentiation stage to the young microspore stage, these days are very important period to confirm the cold tolerance of rice plants at the young microspore stage. The higher previous water temperature up to $25^{\circ}C$ and the deeper previous water depth up to 10cm caused the more cold tolerance of rice plants. Water irrigation of 10cm before the cretical stage showed lower cool injury than that of water irrigation of 20cm during the critical stage. The preventive effect of cool injury by combined treatment of the deep water irrigation before and during the critical stage was not additive but synergistic. The cold tolerance of rice plants grown in previous heavy nitrogen level was rapidly decreased when nitrogen content of leaf blade at the young microspore stage was excessive over the critical nitrogen level. Nitrogen content of leaf blade at the changing point of cold tolerance was estimated as about 3.5% for Japonica cultivars and about 2.5% for Indica x Japonica cultuvars. It is considered that these critical nitrogen contents of leaf blade can be used as a index of the safe critical nitrogen level for the preventive practices to cool injury. It was summarized that increase of engorged pollens per anther by high previous water temperature resulted from the increase of number of differentiated microspores per anther, otherwise, the increase of engorged pollens by the decrease of previous nitrogen level was caused by the decrease of the number of aborted microspores per anther.

  • PDF

The Estimated Dietary Fiber Intake of Korean by Age and Sex (한국인의 연령과 성별에 따른 식이섬유 섭취 상태)

  • Lee, Hye-Jung;Kim, Young-Ah;Lee, Hye-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1207-1214
    • /
    • 2006
  • The purposes of this study were to determine the estimated dietary fiber (DF) intakes per capita/day of Korean as of 2001 by age groups and sex, and to analyze the major food sources of DF using the data on per capita consumption of each food reported in the 2001 Reports of Korean National Nutrition Survey and the newly-established DF database. The mean daily intakes of DF of Korean increased with increasing age until 49 years and thereafter decreased with aging. The intakes of DF/1,000 kcal increased with increasing age until 64 years and thereafter decreased with aging. On the average, the Korean people under age of 49 did not meet adequate intake (AI) of DF (12 g/1,000 kcal) in Dietary Reference Intakes (DRI) for the Koreans. The male people less satisfied the AI than the female did. The major food groups contributed to DF intakes of Korean adults were high in the order of vegetables, cereals, fruits, seasonings, legumes and seaweeds. Regardless of age and sex, vegetables, cereals and fruits were three major sources of DF for Koreans who obtained approximately 75% of DF from those sources. It has been shown that rice was the first single food source of DF intake for the age groups less than 12 years, however Kimchi was the first major source for all the age groups over 12 years. The infant and elderly groups obtained more DF from 10 major single food sources than the other age groups did. The results of the study revealed that the present levels of DF intakes of Korean in all age groups except the elderly group are insufficient to meet the AI for DF. Therefore the beneficial effects of DF on health and the increased consumption of DF from the variety of food sources should be emphasized through the continuous nutritional education.

Variation of Rice Production for Two Decades before and after Breeding Tongil Variety in Korea (수도 통일품종 육성보급 전후 20년간의 생산성 변이)

  • Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.183-192
    • /
    • 1982
  • The variability of rice productivity during last 2 decades (1961-1980) of ten years before and after the introduction of"Tongil" was reviewed from the epochal, regional and varietal points of view. During that period the cultivated area of paddy rice have remained almost unchanged, while the total rice production have got elevated from 3, 463 million metric tons in 1961 to 6.006 million metric tons in 1977, recording 73.4% increase. This remarkable increase in rice production is considered to be attributable much to the development and release of new high yielding variety, "Tongil", coupled with the amelioration of cultural techniques. However, in 1978 Tongil type varieties experienced the epidemic outbreak of blast disease due to the shifted race population of blast fungus and in 1980 recorded poor rice production as low as in 1960's due to the unfavorable weather stress throughout the rice growing season, giving rise to many problems awaiting solutions for securing the stabilized high production of rice. The rice yield has continued the gradual increase during last two decades but its difference between farmer and research organization have got wider from 79kg/10a during 1960 to 1971 to 101kg/l0a during 1972 to 1980, and also the inter-regional differences have been increased from 50-60kg/10a to 80kg/10a during those periods. Therefore, this proves that we have raised the upper boundary of rice yield by increasing the yield potential of rice variety but have not changed those absolute deviations. Estimates indicate that the increased rice production during that period was indebted 40 percent to the varietal improvement and 13 percent to the ameliorated agro-technologies, and the rest, 47 percent, could be ascribed to the other factors besides varieties and cultural technologies such as the improved agricultural environments, etc. Of course, even though it cannot be expected to unify the cultural environments and the cultural technologies, provided that much efforts are to be endeavored to minimize the yield difference of 20 percent between farmer and research organizations and the inter-regional yield difference of 20 percent, much increased rice production can be expected to be achieved with the current level of cultural technology and the yielding potential of the present rice varieties. In order to expedite the above effects on rice production the followings are to be put into practices consitently and steadfastly. 1. Reinforcement of breeding for varieties with high yielding potential and less susceptible to climatic-stress and pests, and of basic physicoecological studies of rice plant for improving the cultural technologies. 2. Continuous endeavor to secure the stabilized cultural environments by improving the soil fertility and increasing the drainage and irrigation facilities. 3. Political back-up to encourage the farmers' incentives for production 4. Precise surveys for agricultural statistics to facilitate the long-term planninge long-term planning.

  • PDF

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Quality Characteristics of Sulgidduk Containing Chlorella Powder (클로렐라를 첨가한 설기떡의 품질특성)

  • 박민경;이재민;박찬현;인만진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.225-229
    • /
    • 2002
  • The quality characteristics of sulgidduk, a steamed rice cake, with chlorellaa sulgidduk) were evaluated. Chlorella sulgidduk was prepared in the different ratio of chlorella powder (0, 0.2, 0.5 or 1%, w/w) and water content (15 or 20%, w/w). In mechanical texture characteristics, hardness, gumminess and brittleness were higher in 15% water content chlorella sulgidduk and lower in 20% water content chlorella sulgidduk than in the absence of chlorella (the control sulgidduk), wherease 20% water content chlorella sulgidduk and a significantly higher adhesiveness and cohesiveness values (p<0.05) compared with control 24 hours storage at $25^{\circ}C$, the good texture characteristics were maintained in 20% water content chlorella sulgidduk. In sensory evaluation, the most favorite quality characteristics were shown in the sulgidduk with 0.2 and 0.5% chlorella powder.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.