• Title/Summary/Keyword: Ribosomal

Search Result 1,064, Processing Time 0.036 seconds

Binding Mode Analysis of Bacillus subtilis Obg with Ribosomal Protein L13 through Computational Docking Study

  • Lee, Yu-No;Bang, Woo-Young;Kim, Song-Mi;Lazar, Prettina;Bahk, Jeong-Dong;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2009
  • Introduction: GTPases known as translation factor play a vital role as ribosomal subunit assembly chaperone. The bacterial Obg proteins ($Spo{\underline{0B}}$-associated ${\underline{G}}TP$-binding protein) belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the new target for antibacterial drug. The majority of bacterial Obgs have been commonly found to be associated with ribosome, implying that these proteins may play a fundamental role in ribosome assembly or maturation. In addition, one of the experimental evidences suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein (BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal subunit in Escherichia coli. In order to investigate binding mode between the BsObg and the BsL13, protein-protein docking simulation was carried out after generating 3D structure of the BsL13 structure using homology modeling method. Materials and Methods: Homology model structure of BsL13 was generated using the EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in order to predict a reasonable binding mode. The solvated energy minimization calculation of the docked conformation was carried out to refine the structure. Results and Discussion: The possible binding conformation of BsL13 along with activated Obg fold in BsObg was predicted by computational docking study. The final structure is obtained from the solvated energy minimization. From the analysis, three important H-bond interactions between the Obg fold and the L13 were detected: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The interaction between the BsObg and BsL13 structures were also analyzed by electrostatic potential calculations to examine the interface surfaces. From the results, the key residues for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. Conclusion and Prospects: In this study, we have focused on the binding mode of the BsObg protein with the ribosomal BsL13 protein. The interaction between the activated Obg and target protein was investigated with protein-protein docking calculations. The binding pattern can be further used as a base for structure-based drug design to find a novel antibacterial drug.

Phylogenetic Analysis of the Corticiaceae Based on Gene Sequences of Nuclear 18S Ribosomal DNAs

  • Lee, Seung-Shin;Jung, Hack-Sung
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.253-258
    • /
    • 1997
  • The nuclear 18S ribosomal RNA genes of seven corticioid species were sequenced. These sequences were analyzed and compared with those of 24 other species of the order Aphyllophorales and phylogenetic trees were constructed using parsimonious methods. Phylogenetic analyses showed that two species among examined members of the Corticiaceae, Resinicium bicolor and Thanatephorus praticola, are located distantly from the remaining six species. The separation of R. bicolor seems to be kphylogenetically significant because it has very unique cystidia. The independent lineage of T. practicola suggests that it is also phylogenetically distinct because it has unusual features like the homobasidium producing secondary spores and the spetal ultrastructure of pore cap. Furthermore, Auriscalpium vulgare, Bondarzewia berkeleyi, and Heterobasidion annosum from different families of the Aphyllophorales proved to be closely related to the species of the Corticiaceae. They all have amyloid spores and grouped with Aleyrodiscus amorphus, which is a member of the Corticiaceae. The amyloidity of spores seems to be an improtant character throughout the order of the Aphyllophorales.

  • PDF

Phylogenetic Analyses of Nuclear rDNA ITS Sequences of Korean Allium L. Subgenus Rhizirideum(Alliaceae)

  • Lee, Nam-Sook
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2001
  • Phylogenetic relationships among the Korean taxa of the genus Allium subgenus Rhizirideum and some related taxa were assessed on the basis of in sequences of nuclear ribosomal DNA. Twenty-eight accessions of the genus Allium L. consisting of subgenera Rhizirideum (19 taxa), Allium (5 taxa) and Amerallium (one taxon) were analyzed. The variation in the ITS region was informative at the levels of section except for sect. Reticulato- bulbosa which is known to be of multiple origin. The ITS 2 region was longer than the ITS 1 region, and all of the investigated Allium taxa were the same in length in the 5.8S region except for A. monanthum. Allium cyaneum var. cyaneum was the shortest (635 bp) and A. victorialis the longest (646 bp) among the investigated Korean taxa. The three morphologically similar taxa, A. thunbergii, A. sacculiferum that has been included in A. thunbergii, and A. deltoid- fistulosum, had the same ITS lengths of 641 bp, but were clearly distinguished in the phylogenetic analysis of their ITS sequences.

  • PDF

A newly developed consensus polymerase chain reaction to detect Mycoplasma species using 16S ribosomal RNA gene

  • Hong, Sunhwa;Park, Sang-Ho;Chung, Yung-Ho;Kim, Okjin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.4
    • /
    • pp.289-294
    • /
    • 2012
  • Mycoplasmas are highly fastidious bacteria, difficult to culture and slow growing. Infections with Mycoplasma species can cause a variety of problems in living organisms and in vitro cell cultures. In this study, we investigated the usefulness of a genus-specific consensus PCR analysis method to detect Mycoplasma species. The developed consensus primer pairs MycoF and MycoR were designed specifically to amplify the 16S ribosomal RNA gene (rRNA) of Mycoplasma species by the optimized PCR system. The developed consensus PCR system effectively amplified 215 bp of Mycoplasma genus-specific region of 16S rRNA. In conclusion, we recommend this consensus PCR for monitoring Mycoplasma species in animals, human and cell culture system.