• Title/Summary/Keyword: Ribbed structure

Search Result 19, Processing Time 0.021 seconds

Mechanical features of cable-supported ribbed beam composite slab structure

  • Qiao, W.T.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.523-534
    • /
    • 2017
  • Cable-supported ribbed beam composite slab structure (CBS) is proposed in this study. As a new cable-supported structure, it has many merits such as long span availability and cost-saving. Inspired by the previous research on cable-supported structures, the fabrication and construction process are developed. Pre-stress design method based on static equilibrium analysis is presented. In the algorithm, the iteration convergence can be accelerated and the calculation result can be kept in an acceptable precision by setting a rational threshold value. The accuracy of this method is also verified by experimental study on a 1:5 scaled model. Further, important parameters affecting the mechanical features of the CBS are discussed. The results indicate that the increases of sag-span ratio, depth of the ribbed beam and cable diameter can improve the mechanical behavior of the CBS by some extent, but the influence of strut sections on mechanical behavior of the CBS is negligible.

Study of Application of Salt Resistance Concrete Beam Reinforced with Glass Fiber Reinforced Polymer-Ribbed Bar as a Member of Marine Structure (GFRP 보강 내염성 콘크리트 보의 해양구조부재로서의 적용성 검토)

  • Kim, Chung-Ho;Hwang, Yun-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.94-99
    • /
    • 2008
  • Three types of salt resistant concrete beams reinforced with glass fiber reinforced polymer-ribbed bars (GFRP-ribbed bars) were selected, and their applicable properties were investigated with the goal of improving the problem of capacity deterioration in marine structures due to sea water corrosion. In this study, the structural behaviors were similar to RC beams in relation to the development of the strength and stiffness up to the generation of the initial crack. After the growth of this initial crack, the structural properties decreased owing to a sudden loss of bond strength. Also these beams showed the trends of brittle failure. As a result, it was confirmed that a GFS beam replaced with Fly Ash (20%) and Silica Fume (5%) has the best application as a marine structural element.

Study on mechanical behaviors of cable-supported ribbed beam composite slab structure during construction phase

  • Qiao, W.T.;An, Q.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.177-194
    • /
    • 2016
  • The cable-supported ribbed beam composite slab structure (CBS) is a new type of pre-stressed hybrid structure. The standard construction method of CBS including five steps and two key phases are proposed in this paper. The theoretical analysis and experimental research on a 1:5 scaled model were carried out. First, the tensioning construction method based on deformation control was applied to pre-stress the cables. The research results indicate that the actual tensile force applied to the cable is slightly larger than the theoretical value, and the error is about 6.8%. Subsequently, three support dismantling schemes are discussed. Scheme one indicates that each span of CBS has certain level of mechanical independence such that the construction of a span is not significantly affected by the adjacent spans. It is shown that dismantling from the middle to the ends is an optimal support dismantling method. The experimental research also indicates that by using this method, the CBS behaves identically with the numerical analysis results during the construction and service.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

A Study on the transformation Pross of Vernacular Houses in Ulleung-Island -Focused on wall, roof, window and ceiling- (울릉도 민가의 변화과정에 관한 연구 -벽체, 지붕, 창호, 천장을 중심으로-)

  • Kim Chan-Yeong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.85-96
    • /
    • 2004
  • The purpose of this study was to (md out the characteristics of the residential house in Ulleung Island in terms of building materials, structure and construction method, structural design by actual field surveys. This study found several facts; First, the house was classified into the log house and mud-wall house according to building material for wall structure. The log house prevailed in the early days of the settlement in the island because of affulent timber materials available around. However, the mud wall house became a popular type in later days because of the depletion of timber materials. Second, the Udeki wall was an unique installation reflecting the severe climate conditions of Ulleung Island. However, many aspects of the Udeki wall was changed according to the change of living style and the introduction of modem heating systems in terms of its function, size, building material, layout position etc. Third, the roofing material also has been changed from materials available locally to slate materials transported from the mainland. Fourth, the bamboo slender-ribbed door as a single-swing door type was popular and later time the single-sliding door or three ribbed door was widely used in rooms installed later instead. Fifth, the roof was placed over the room, kitchen, and Chukdam (outer wall) and this was a resonable way to cope with heavy snowfalls in the winter season in Ulleung Island.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 2 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 2)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 1 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 1)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.

Seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab

  • Turker, Kaan;Gungor, Ilhan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • In this study, seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab were evaluated numerically. Moment resisting systems consisting of moment and dual frame were selected as structural system of the buildings. Sufficiency of moment resisting wide-beam frames designed with high ductility requirements were evaluated. Upon necessity frames were stiffen with shear-walls. The buildings were designed in accordance with the Turkish Earthquake Code (TEC 2007) and were evaluated by using the strain-based nonlinear static method specified in TEC. Second order (P-delta) effects on the lateral load capacity of the buildings were also assessed in the study. The results indicated that the predicted seismic performances were achieved for the low-rise (4-story) building with the high ductility requirements. However, the moment resisting frame with high ductility was not adequate for the medium-rise building. Addition of sufficient amount of shear-walls to the system proved to be efficient way of providing the target performance of structure.