• 제목/요약/키워드: Rhodamine 123

검색결과 44건 처리시간 0.021초

Effect of brazilin on phosphatase activity in isolated rat epididymal adipocytes

  • Lee, Yong-Khil;So, Dhong-Soo;Moon, Chang-Kiu
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.218-218
    • /
    • 1996
  • Brazilin은 포도당 수송을 증가시키는 물질로 autooxidation에 의하여 산화되면서 hydrogen peroxide를 생성할 것으로 추정되었으며, hydrogen peroxide는 phosphatase를 억제하여 포도당 수송을 증가시키는 것으로 보고되었다. 따라서 본 실험에서 brazilin의 산화에 의한 hydrogen peroxide의 생성여부를 확인하고 phosphatase 활성에 미치는 braziline의 작용을 살펴보았다. 먼저 UV absorption spectra를 이용하여 brazilin이 반응액중에서 구조적인 변화를 일으키는지 확인하였다. Hydrogen peroxide의 생성은 rhodamine 123를 이용한 형광측정법으로 측정하였으며, phosphatase의 활성은 pH에 따른 phosphatase의 활성을 p-NPP의 탈인산화의 UV 흡광도 변화로 측정하였다. PP2A의 활성은 phosphorylase a를 기질로 하여 측정하였다.

  • PDF

Effects of Vinorelbine on Cisplatin Resistance Reversal in Human Lung Cancer A549/DDP Cells

  • Zhou, Yu-Ting;Li, Kun;Tian, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4635-4639
    • /
    • 2013
  • Multi-drug resistance (MDR) is an essential aspect of human lung cancer chemotherapy failure. Recent studies have shown that vinorelbine is involved in underlying processes in human tumors, reversing the MDR inseveral types of cancer cells. However, the roles and potential mechanism are not fully clear. In this study, we explored effects of vinorelbine in multi-drug resistance reversal of human lung cancer A549/DDP cells. We found that vinorelbine increased drug sensitivity to cisplatin and intracellular accumulation of rhodamine-123, while decreasing expression of P-glycoprotein (P-gp), multi-drug resistance-associated protein (MRP1) and glutathione-S-transferase ${\pi}$ (GST-${\pi}$) in A549/DDP cells. At the same time, we also established downregulation of p-Akt and decreased transcriptional activation of NF-${\kappa}B$ and twist after vinorelbine treatment. The results indicated that vinorelbine might be used as a potential therapeutic strategy in human lung cancer.

농촌 소하천의 재폭기 계수 추정(지역환경 \circled2) (Predicting Reaeration Rate in Rural Small Streams)

  • 송인홍;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.570-577
    • /
    • 2000
  • In this study, using modified tracer method(Constant Rate Injection, CRI method), reaeration rates were measured in the territories of Bokha stream. In case of Kwanri stream, reaeration rates of a diversion were measured simultaneously. Propane gas and Rhodamine-WT were used as gas and dye tracer, respectively. The experimental results show that reaeration rates of the stream were ranged from 6.16 to 24.52 1/day and those of a diversion in Kwanri stream were ranged from 28.39 to 123.61 1/day. It is resulted that mean velocity of stream is a dominant factor in reaeration process and diversion significantly influence on reareation process.

  • PDF

사람 다수정난자의 체외배양시 Fragmented Embryo와 Non-fragmented Embryo에서의 Methionine 유입량 및 미토콘드리아 분포양상의 비교 (Mitochondrial Distribution and Methionine Uptake in Fragmented and Non-fragmented Embryos Derived from Multi-pronuclei Zygotes in Human In Vitro Fertilization (IVF) Program)

  • 도병록;정미경;장미경;이경아;고정재;윤태기;차광열
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제22권3호
    • /
    • pp.279-285
    • /
    • 1995
  • Despite the frequent incidence of embryo fragmentation in early human embryos, the reason of the embryo fragmentation has not been known yet. This study was conducted to investigate the histological difference(s) between fragmented (FR) and non-fragmented (NFR) human embryos focusing on comparison of mitochondrial distribution and protein synthesis. Multi-pronuclei zygotes (MPZ) such as three or more pronuclei containing in human in vitro fertilization and embryo transfer (IVF-ET) program were used for this study. MPZ were cultured in TCM-199 supplemented with 10% of human fetal cord serum (hFCS) in 5% $CO_2$ incubator at $37^{\circ}C$ for 24 hours. The cleaved embryos to 2-4 cells after 24 hours were grouped by their grade of fragmentation. Embryos were stained with Rhodamine123 (Rh123) and fluorescence was evaluated under the fluorescence microscope through PB 450-490 filter (Leitz). Regarding to protein synthesis during early human embryogenesis, there is no significant difference in the amount of synthetic proteins between FR and NFR embryos. Distribution of cytoplasmic organelles in embryos was evaluated by transmission electron microscope (TEM). The cytoplasmic distribution of mitochondria was different between FR and NFR embryos. The mitochondrial distribution was even in NFR, whereas severely aggregated in FR. It is not able to clarify in the present study whether this uneven mitochondrial distribution in FR embryo is the reason for embryo fragmentation or is the result from fragmentation. Physiological disparity related to the mitochondrial distribution may be one of the reasons for embryo fragmentation. Further studies should be addressed to investigate the physiological differences between FR and NFR embryos.

  • PDF

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

Use of Ratiometric Probes with a Spectrofluorometer for Bacterial Viability Measurement

  • Cleach, Jerome;Watier, Denis;Le Fur, Bruno;Brauge, Thomas;Duflos, Guillaume;Grard, Thierry;Lencel, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1782-1790
    • /
    • 2018
  • Assessment of microorganism viability is useful in many industrial fields. A large number of methods associated with the use of fluorescent probes have been developed, including fluorimetry, fluorescence microscopy, and cytometry. In this study, a microvolume spectrofluorometer was used to measure the membrane potential variations of Escherichia coli. In order to estimate the sensitivity of the device, the membrane potential of E. coli was artificially disrupted using an ionophore agent: carbonyl cyanide 3-chlorophenylhydrazone. The membrane potential was evaluated using two ratiometric methods: a Rhodamine 123/4',6-diamidino-2-phenylindole combination and a JC-10 ratiometric probe. These methods were used to study the impact of freezing on E. coli, and were compared with the conventional enumeration method. The results showed that it was beneficial to use this compact, easy-to-use, and inexpensive spectrofluorometer to assess the viability of bacterial cells via their membrane potential.

In silico Study on the Interaction between P-glycoprotein and Its Inhibitors at the Drug Binding Pocket

  • Kim, Namseok;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2317-2325
    • /
    • 2014
  • P-glycoprotein (P-gp) is a member of the ATP-Binding Cassette transporter superfamily and mediates transmembrane efflux of many drugs. Since it is involved in multi-drug resistance activity in various cancer cells, the development of P-gp inhibitor is one of the major concerns in anticancer therapy. Human P-gp protein has at least two "functional" drug binding sites that are called "H" site and "R" site, hence it has multi-binding-specificities. Though the amino acid residues that constitute in drug binding pockets have been proposed by previous experimental evidences, the shapes and the binding poses are not revealed clearly yet. In this study, human P-gp structure was built by homology modeling with available crystal structure of mouse P-gp as a template and docking simulations were performed with inhibitors such as verapamil, hoechst33342, and rhodamine123 to construct the interaction between human P-gp and its inhibitors. The docking simulations were performed 500 times for each inhibitor, and then the interaction frequency of the amino acids at the binding poses was analyzed. With the analysis results, we proposed highly contributing residues that constitute binding pockets of the human P-gp for the inhibitors. Using the highly contributing residues, we proposed the locations and the shapes of verapamil binding site and "R" site, and suggested the possible position of "H" site.

흰쥐에서 아피제닌이 타목시펜의 생체이용률에 미치는 영향 (Effects of Apigenin, a Flavonoid, on the Bioavailability of Tamoxifen in Rats)

  • 김양우;최준식
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.370-376
    • /
    • 2010
  • The aim of this study is to investigate the effect of apigenin on the pharmacokinetics of tamoxifen in rats. Tamoxifen was administered orally (10 mg/kg) or intravenously (2 mg/kg) without or with oral administration of apigenin (0.4, 2.0 or 8.0 mg/kg) to rats. The effect of apigenin on the P-glycoprotein (P-gp) and CYP3A4 activity was also evaluated. Apigenin inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. The plasma concentrations of tamoxifen were increased significantly by apigenin compared to control. The areas under the plasma concentration-time curve (AUC) and the peak concentrations ($IC_{max}$) of tamoxifen with apigenin were significantly higher than those of the control group. Consequently, the relative bioavailability (RB%) of tamoxifen with apigenin was 2-3-fold higher than the control, and absolute bioavailability (AB%) of tamoxifen were significantly higher (p<0.05 with co-administration, p<0.01 with pretreatment) than those of the control. The increased bioavailability of tamoxifen in rats with apigenin might be associated with the inhibition of an efflux pump P-glycoprotein and CYP3A4 by apigenin. From these results, dosage regimen of tamoxifen may be need to adjust when concomitantly administered with apigenin.

마우스 림프종세포에 대한 disulfiram/copper의 항암증진효과 (Synergistic anticancer activity of disulfiram/copper against mouse lymphoma cells)

  • 정해빈;주홍구
    • 대한수의학회지
    • /
    • 제62권1호
    • /
    • pp.3.1-3.7
    • /
    • 2022
  • Disulfiram (DSF) is a marketed drug to treat patients with alcohol dependence by inhibiting aldehyde dehydrogenase. Over the last few decades, DSF has been shown to have anticancer effects through different mechanisms. Moreover, this effect can be elevated when used with copper (Cu). Subsequent studies have been conducted on various cancers, but few on lymphoma. This study investigated the anticancer effects of DSF on lymphoma and how this effect changed when treated with Cu. DSF synergistically decreased the metabolic activity of EL4 lymphoma cells when combined with Cu. At 1 µM of DSF alone, the metabolic activity of EL4 cells decreased by 49% compared to the control, whereas it decreased by 87% with a DSF + CuCl2 treatment. Rhodamine 123 and 2',7'-dichlorofluorescein diacetate staining showed that DSF induced the reduction of the mitochondrial membrane potential and promoted the production of reactive oxygen species. In particular, the combined treatment of DSF + Cu induced cell death based on multiple assays, including annexin V-fluorescein isothiocyanate/propidium iodide staining. Overall, DSF has anticancer effects on lymphoma cells and exhibits synergistic effects when combined with Cu. This study provides some valuable information to broaden the use of DSF in clinics and basic research.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.