DOI QR코드

DOI QR Code

Use of Ratiometric Probes with a Spectrofluorometer for Bacterial Viability Measurement

  • Cleach, Jerome (Universite Littoral Cote d'Opale, EA 7394 - ICV - Institut Charles Viollette, USC ANSES - ULCO) ;
  • Watier, Denis (Universite Littoral Cote d'Opale, EA 7394 - ICV - Institut Charles Viollette, USC ANSES - ULCO) ;
  • Le Fur, Bruno (PFI Nouvelles Vagues (PFINV)) ;
  • Brauge, Thomas (ANSES, Laboratoire de Securite des Aliments, Boulevard du Bassin Napoleon) ;
  • Duflos, Guillaume (ANSES, Laboratoire de Securite des Aliments, Boulevard du Bassin Napoleon) ;
  • Grard, Thierry (Universite Littoral Cote d'Opale, EA 7394 - ICV - Institut Charles Viollette, USC ANSES - ULCO) ;
  • Lencel, Philippe (Universite Littoral Cote d'Opale, EA 7394 - ICV - Institut Charles Viollette, USC ANSES - ULCO)
  • Received : 2018.05.02
  • Accepted : 2018.06.18
  • Published : 2018.11.28

Abstract

Assessment of microorganism viability is useful in many industrial fields. A large number of methods associated with the use of fluorescent probes have been developed, including fluorimetry, fluorescence microscopy, and cytometry. In this study, a microvolume spectrofluorometer was used to measure the membrane potential variations of Escherichia coli. In order to estimate the sensitivity of the device, the membrane potential of E. coli was artificially disrupted using an ionophore agent: carbonyl cyanide 3-chlorophenylhydrazone. The membrane potential was evaluated using two ratiometric methods: a Rhodamine 123/4',6-diamidino-2-phenylindole combination and a JC-10 ratiometric probe. These methods were used to study the impact of freezing on E. coli, and were compared with the conventional enumeration method. The results showed that it was beneficial to use this compact, easy-to-use, and inexpensive spectrofluorometer to assess the viability of bacterial cells via their membrane potential.

Keywords

References

  1. Joux F, Lebaron P. 2000. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2: 1523-1535. https://doi.org/10.1016/S1286-4579(00)01307-1
  2. Xu L, Zhang C, Xu P, Wang XC. 2017. Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: culturability, membrane permeability, metabolism, and genetic damage. J. Environ. Sci. (China) 65: 356-366.
  3. Strahl H, Hamoen LW. 2010. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. USA 107: 12281-12286. https://doi.org/10.1073/pnas.1005485107
  4. McFeters GA, Feipeng PY, Pyle BH, Stewart PS. 1995. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 21: 1-13. https://doi.org/10.1016/0167-7012(94)00027-5
  5. Breeuwer P, Abee T. 2000. Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food Microbiol. 55: 193-200. https://doi.org/10.1016/S0168-1605(00)00163-X
  6. Strauber H, Muller S. 2010. Viability states of bacteria - specific mechanisms of selected probes. Cytometry A 77: 623-634.
  7. Kaprelyants A, Kell D. 1992. Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J. Appl. Microbiol. 72: 410-422.
  8. Diaper J, Tither K, Edwards C. 1992. Rapid assessment of bacterial viability by flow cytometry. Appl. Microbiol. Biotechnol. 38: 268-272.
  9. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. 2000. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob. Agents Chemother. 44: 827-834. https://doi.org/10.1128/AAC.44.4.827-834.2000
  10. Zhao J-Y, Jia L-M, Song W-Q, Zhang W-L, Fu Y-M, Zhang Y, et al. 2014. Labeling efficiency and toxicity evaluation of CdSe/ZnS quantum dots on Escherichia coli. J. Nanopart. Res. 16: 2424. https://doi.org/10.1007/s11051-014-2424-0
  11. Chung J, Kang JS, Jurng JS, Jung JH, Kim BC. 2015. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67: 303-308. https://doi.org/10.1016/j.bios.2014.08.039
  12. Emaus RK, Grunwald R, Lemasters JJ. 1986. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim. Biophys. Acta 850: 436-448. https://doi.org/10.1016/0005-2728(86)90112-X
  13. Porter J, Pickup R, Edwards C. 1995. Membrane hyperpolarisation by valinomycin and its limitations for bacterial viability assessment using rhodamine 123 and flow cytometry. FEMS Microbiol. Lett. 132: 259-262. https://doi.org/10.1111/j.1574-6968.1995.tb07843.x
  14. Williams S, Hong Y, Danavall D, Howard-Jones M, Gibson D, Frischer M, et al. 1998. Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J. Microbiol. Methods 32: 225-236. https://doi.org/10.1016/S0167-7012(98)00014-1
  15. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R. 1999. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37: 77-86. https://doi.org/10.1016/S0167-7012(99)00048-2
  16. Nescerecka A, Hammes F, Juhna T. 2016. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining. J. Microbiol. Methods 131: 172-180. https://doi.org/10.1016/j.mimet.2016.10.022
  17. Bunthof CJ, van Schalkwijk S, Meijer W, Abee T, Hugenholtz J. 2001. Fluorescent method for monitoring cheese starter permeabilization and lysis. Appl. Environ. Microbiol. 67: 4264-4271. https://doi.org/10.1128/AEM.67.9.4264-4271.2001
  18. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Engineered ZnO and $TiO_2$ nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 51: 1872-1881. https://doi.org/10.1016/j.freeradbiomed.2011.08.025
  19. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 2011. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333: 345-348. https://doi.org/10.1126/science.1204763
  20. Matsuyama T. 1984. Staining of living bacteria with rhodamine 123. FEMS Microbiol. Lett. 21: 153-157. https://doi.org/10.1111/j.1574-6968.1984.tb00202.x
  21. Monfort P, Baleux B. 1996. Cell cycle characteristics and changes in membrane potential during growth of Escherichia coli as determined by a cyanine fluorescent dye and flow cytometry. J. Microbiol. Methods 25: 79-86. https://doi.org/10.1016/0167-7012(95)00089-5
  22. Comas J, Vives-Rego J. 1997. Assessment of the effects of gramicidin, formaldehyde, and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 29: 58-64. https://doi.org/10.1002/(SICI)1097-0320(19970901)29:1<58::AID-CYTO6>3.0.CO;2-9
  23. Jiao N, Yang Y, Luo T. 2004. Membrane potential based characterization by flow cytometry of physiological states in an aerobic anoxygenic phototrophic bacterium. Aquat. Microb. Ecol. 37: 149-158. https://doi.org/10.3354/ame037149
  24. Rezaeinejad S, Ivanov V. 2011. Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiol. Res. 166: 129-135. https://doi.org/10.1016/j.micres.2010.01.007
  25. Gao W, Leung K, Hawdon N. 2009. Freezing inactivation of Escherichia coli and Enterococcus faecalis in water: response of different strains. Water Environ. Res. 81: 824-830. https://doi.org/10.2175/106143009X407348
  26. Sherr B, Sherr E, del Giorgio P. 2001. Enumeration of total and highly active bacteria. Methods Microbiol. 30: 129-159.
  27. Muthukrishnan T, Govender A, Dobretsov S, Abed RM. 2017. Evaluating the reliability of counting bacteria using epifluorescence microscopy. J. Mar. Sci. Eng. 5: 4. https://doi.org/10.3390/jmse5010004
  28. Silva F, Lourenço O, Queiroz JA, Domingues FC. 2011. Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel farred dye. J. Antibiot. (Tokyo) 64: 321-325. https://doi.org/10.1038/ja.2011.5
  29. Xu C, Li J, Yang L, Shi F, Yang L, Ye M. 2017. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 73: 1445-1451. https://doi.org/10.1016/j.foodcont.2016.10.048
  30. Ma J, Kang M, Zhang Y, Guo X, Tian Z, Ding C, et al. 2017. Self-defense of Escherichia coli against damages caused by nanoalumina. Environ. Toxicol. Pharmacol. 55: 110-117. https://doi.org/10.1016/j.etap.2017.08.011
  31. Biggerstaff J, Le Puil M, Weidow B, Prater J, Glass K, Radosevich M, et al. 2006. New methodology for viability testing in environmental samples. Mol. Cell. Probes 20: 141-146. https://doi.org/10.1016/j.mcp.2005.11.006
  32. Breeuwer P, Abee T. 2004. Assessment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques, pp. 1563-1580. In Kowalchuk GA, de Bruijn F, Head IM, Van der Zijpp AJ, van Elsas JD (eds.), Molecular Microbial Ecology Manual. Springer. Berlin.
  33. Sekyere JO, Amoako DG. 2017. Carbonyl cyanide mchlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrugresistant Enterobacteriaceae. Front. Microbiol. 8: 228.
  34. Chimerel C, Field CM, Pinero-Fernandez S, Keyser UF, Summers DK. 2012. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim. Biophys. Acta 1818: 1590-1594. https://doi.org/10.1016/j.bbamem.2012.02.022
  35. Kennedy D , Cronin UP, Wilkinson MG. 2011. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. Appl. Environ. Microbiol. 77: 4657-4668. https://doi.org/10.1128/AEM.00323-11
  36. Guo N , Zang Y-P, Cui Q, Gai Q -Y, Jiao J, Wang W, et al. 2017. The preservative potential of Amomum tsaoko essential oil against E. coli, its antibacterial property and mode of action. Food Control 75: 236-245. https://doi.org/10.1016/j.foodcont.2016.12.013
  37. Novo D, Perlmutter NG, Hunt RH, Shapiro HM. 1999. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry A 35: 55-63. https://doi.org/10.1002/(SICI)1097-0320(19990101)35:1<55::AID-CYTO8>3.0.CO;2-2
  38. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. 2007. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl. Environ. Microbiol. 73: 3283-3290. https://doi.org/10.1128/AEM.02750-06
  39. Miyanaga K, Takano S, Morono Y, Hori K, Unno H, Tanji Y. 2007. Optimization of distinction between viable and dead cells by fluorescent staining method and its application to bacterial consortia. Biochem. Eng. J. 37: 56-61. https://doi.org/10.1016/j.bej.2007.03.007
  40. Lopez-Amoros R, Comas J, Vives-Rego J. 1995. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl. Environ. Microbiol. 61: 2521-2526.

Cited by

  1. Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity vol.116, pp.19, 2018, https://doi.org/10.1073/pnas.1901788116
  2. Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential vol.115, pp.None, 2018, https://doi.org/10.1016/j.foodcont.2020.107301
  3. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism vol.147, pp.None, 2021, https://doi.org/10.1016/j.lwt.2021.111574
  4. Measurement of fish freshness: Flow cytometry analysis of isolated muscle mitochondria vol.373, pp.no.pb, 2018, https://doi.org/10.1016/j.foodchem.2021.131690