• Title/Summary/Keyword: Rhodamine

Search Result 364, Processing Time 0.025 seconds

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Photocatalytic Decolorization of Dye Using Packed-bed Reactor and Immobilized TiO2/UV System (충전층 반응기와 고정화 TiO2/UV를 이용한 Rhodamine B의 광촉매 탈색)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.255-260
    • /
    • 2007
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized $TiO_2/UV$ System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of tile PVDF reactor.

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process (고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해)

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.137-146
    • /
    • 2014
  • Objectives: Feasibility of electrochemical oxidation of the aqueous non-biodegradable wastewater such as cationic dye Rhodamine B (RhB) has been investigated in an electrochemical reactor with solid polymer electrolyte (SPE). Methods: Nafion 117 cationic exchange membrane as SPE has been used. Anode/Nafion/cathode sandwiches were constructed by sandwiching Nafion between two dimensionally stable anodes (JP202 electrode). Experiments were conducted to examine the effects of applied current (0.5~2.0 A), supporting electrolyte type (0.2 N NaCl, $Na_2SO_4$, and 1.0 g/L NaCl), initial RhB concentration (2.5~30.0 mg/L) on RhB and COD degradation and $UV_{254}$ absorbance. Results: Experimental results showed that an increase of applied current in electrolysis reaction with solid polymer electrolyte has resulted in the increase of RhB and $UV_{254}$ degradation. Performance for RhB degradation by electrolyte type was best with NaCl 0.2 N followed by SPE, and $Na_2SO_4$. However, the decrease of $UV_{254}$ absorbance of RhB was different from RhB degradation: SPE > NaCl 0.2 N > $Na_2SO_4$. RhB and $UV_{254}$ absorbance decreased linearly with time regardless of the initial concentration. The initial RhB and COD degradation in electrolysis reaction using SPE showed a pseudo-first order kinetics and rate constants were 0.0617 ($R^2=0.9843$) and 0.0216 ($R^2=0.9776$), respectively. Conclusions: Degradation of RhB in the electrochemical reactor with SPE can be achieved applying electrochemical oxidation. Supporting electrolyte has no positive effect on the final $UV_{254}$ absorbance and COD degradation. Mineralization of COD may take a relatively longer time than that of the RhB degradation.

Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process (광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

Application of the Response Surface Methodology and Process Optimization to the Electrochemical Degradation of Rhodamine B and N, N-Dimethyl-4-nitrosoanilin Using a Boron-doped Diamond Electrode (Boron-doped Diamond 전극을 이용한 Rhodamine B와 N, N-Dimethyl-4-nitrosoanilin의 전기화학적 분해에 반응표면분석법의 적용과 공정 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.313-322
    • /
    • 2010
  • The aim of this research was to apply experimental design methodology to optimization of conditions of electrochemical oxidation of Rhodamine B (RhB) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicative of the OH radical). The reactions of electrochemical oxidation of RhB degradation were mathematically described as a function of the parameters of current ($X_1$), NaCl dosage ($X_2$) and pH ($X_3$) and modeled by the use of the central composite design. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and RNO and test variables in a coded unit: RhB removal efficiency (%) = $94.21+7.02X_1+10.94X_2-16.06X_3+3.70X_1X_3+9.05X_2X_3-{3.46X_1}^2-{4.67X_2}^2-{7.09X_3}^2$; RNO removal efficiency (%) = $54.78+13.33X_1+14.93X_2- 16.90X_3$. The model predictions agreed well with the experimentally observed result. Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the RhB degradation using canonical analysis was 100.0%(current, 0.80 A; NaCl dosage, 2.97% and pH 6.37).

Reversal of Multidrug Resistance and Computational Studies of Pistagremic Acid Isolated from Pistacia integerrima

  • Rauf, Abdur;Uddin, Ghias;Raza, Muslim;Ahmad, Aftab;Jehan, Noor;Ahmad, Bashir;Nisar, Muhammad;Molnar, Joseph;Csonka, Akos;Szabo, Diana;Khan, Ajmal;Farooq, Umar;Noor, Mah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2311-2314
    • /
    • 2016
  • Pistagremic acid (PA) is a bioactive triterpenoid isolated from various parts of Pistacia integerrima plants. The aim of this research was to investigate PA for reversion of multidrug resistant (MDR) mediated by P-glycoprotein using rhodamine-123 exclusion study on a multidrug resistant human ABCB1 (ATP-binding cassette, sub-family B, member 1) gene-transfected mouse T-lymphoma cell line in vitro. Results were similar to those with verapamil as a positive control. Docking studies of PA and standard Rhodamine123 were carried out against a P-gp crystal structure which showed satisfactory results. Actually, PA cannot bind exactly where co-crystallized ligand of P-gp is already present. However, the docking study predicted that if a compound gives a lesser score then it may have some potency. The docking scores of PA and Rhodamine were similar. Therefore, we can conclude that there are certain important chemical features of PA which are responsible for the inhibiting potency of P-gp.

Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution

  • Ren, Zhaogang;Chen, Fang;Wang, Bin;Song, Zhongxian;Zhou, Ziyu;Ren, Dong
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.536-544
    • /
    • 2020
  • To address organic dye wastewater, economic and effective adsorbents are required. Here, magnetic biochar from alkali-activated rice straw (AMBC) was successfully synthesized using one-step magnetization and carbonization method. The alkaline activation caused the large specific surface area, high pore volume and abundant oxygen-containing groups of the AMBC, and the magnetization gave the AMBC a certain degree of electropositivity and fast equilibrium characteristics. These characteristics collectively contributed to a relative high adsorption capacity of 53.66 mg g-1 for this adsorbent towards rhodamine B (RhB). In brief, RhB can spontaneously adsorb onto the heterogeneous surface of the AMBC and reach the equilibrium in 60 min. Although the initial pH, ionic strength and other substances of the solution affected the adsorption performance of the AMBC, it could be easily regenerated and reused with considerable adsorption content. Based on the results, H-bonds, π-π stacking and electrostatic interactions were speculated as the primary mechanisms for RhB adsorption onto the AMBC, which was also demonstrated by the FTIR analysis. With the advantageous features of low cost, easy separation, considerable adsorption capacity and favorable stability and reusability, the AMBC would be a potential adsorbent for removing organic dyes from wastewater.

Acrylic Polymer Composition Suitable for Ion Delivery and Selective Detection of Proton, and Hydroxyl and Cu(II) Ions (이온 이동에 적합한 아크릴고분자 박막의 조성과 수소이온, 수산화이온, 구리이온의 선택적 검출)

  • Lee, Dahye;Woo, Heejung;Do, Jung Yun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2014
  • Ion diffusion and chemical binding to acrylic polymer were investigated in a solid film. The composition of acrylic monomers containing amino group and carboxylic acid was adjusted for rapid ion migration in the film. p-Methylred (PMR) and phenolphthalein derivatives were optically sensitive to the concentration of proton and hydroxyl anion, respectively and verified the ion migration through the film layers. A rapid proton migration was observed in the film of a high amino content. On the other hand, $OH^-$ migration occurred rapidly in a high content of carboxylic acid group. The proton migration occurred through the internal layer as well as surface layer of a film and was reversible during 50 repetition examination. Copper(II) ion migration was examined with a Rhodamine-containing polymer film. The light absorption and emission spectra of a Rhodamine-Cu complex showed the key contribution of carboxylic acid group to the Cu(II) migration in a film.