• 제목/요약/키워드: RhoA signaling

검색결과 69건 처리시간 0.031초

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

H2O2 Inhibits Proliferation and Mediates Suppression of Migration via DLC1/RhoA Signaling in Cancer Cells

  • Ma, Long;Zhu, Wen-Zhen;Liu, Ting-Ting;Fu, Hui-Ling;Liu, Zhao-Jun;Yang, Bing-Wu;Song, Tai-Yu;Li, Guo-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1637-1642
    • /
    • 2015
  • Background: RhoGTPase-activating proteins (RhoGAPs) regulate RhoGTPases in cells, but whether individual reactive oxygen species (ROS) regulate RhoGAPs is unknown. Our previous published papers have shown that deleted in liver cancer 1 (DLC1) inhibits cancer cell migration by its RhoGAP activity. The present study was designed to explore the role of $H_2O_2$ in regulation of DLC1. Materials and Methods: We treated cells with $H_2O_2$ for 24h and phenotypic changes were analyzed by MTT, RT-PCR, Western blotting, immunofluorescence staining and wound healing assays. Results: $H_2O_2$ downregulated cyclin D1 and cyclin E to inhibit proliferation, and upregulated BAX to induce apoptosis in MCF-7 cells. Compared with non-tumorigenic cells, $H_2O_2$ increased expression of DLC1 and reduced activity of RhoA in cancer cells. Stress fiber production and migration were also suppressed by $H_2O_2$ in MDA-MB-231 cells. Conclusions: Our study suggests that $H_2O_2$ inhibits proliferation through modulation of cell cycle and apoptosis-related genes, and inhibits migration by decreasing stress fibers via DLC1/RhoA signaling.

HMC05의 혈관이완 활성과 신호전달 작용기전 (Signaling Mechanisms on the Vascular Relaxation of HMC05)

  • 문국진;장효일;김길훤;신흥묵
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.315-320
    • /
    • 2008
  • This study investigated the signaling mechanisms contributed to the vasodilatory effects of HMC05, a herbal prescription. HMC05 acted in an endothelium-independent manner. To elucidate the fundamental mechanisms of its vascular actions, we focused on the signaling molecules involved in actin-myosin filament regulation including 20 kDa myosin light chains (LC20), Rho-associated kinase (ROCK), PKC, JNK and extracellular signal-regulated protein kinase (ERK) in the endothelium-denuded thoracic aorta or isolated smooth muscle cells (SMCs). It lowered the phosphorylation level of LC20 and showed that ROCK, ERK, JNK and $PKC{\alpha}$ pathways played important roles in the effects, as confirmed by the observations with a specific inhibition or activation, and with the activity and the subcellular localization of these molecules. In particular, HMC05 dramatically inhibited the activity of ERK and the downstream signaling of ROCK. It also changed the subcellular localization of the phophorylated $PKC{\alpha}$ as well as the amount of phosphorylation. Taken together, these data indicate that the vascular relaxation effects of HMC05 are attributed to the regulation of these signaling mechanisms.

FRC에서 Lymphotoxin β receptor의 자극은 MLCK와 ROCK의 이중 신호전달 경로를 통해 stress fiber 변화에 관여 (Signals of MLCK and ROCK Pathways Triggered via Lymphotoxin β Receptor are Involved in Stress Fiber Change of Fibroblastic Reticular Cells)

  • 김대식;이종환
    • 생명과학회지
    • /
    • 제29권2호
    • /
    • pp.256-264
    • /
    • 2019
  • Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$)는 TNF 계열로 림프조직의 미세구조와 기관형성에 중요한 역할을 한다. MLCK와 ROCK는 세포의 stress fiber 형성조절에 관여하는 주요 신호전달자이다. Fibroblastic reticular cell (FRC)에서 $LT{\beta}R$ 자극을 통한 이런 신호전달자들의 관련성을 알아보기 위해 ML-7 (MLCK 저해제)이 사용되었다. ML7 처리된 FRC에서 SF가 완전히 파괴되었고 anti-$LT{\beta}R$ antibody 처리 세포와 유사하게 ML7 처리 FRC에서 응축된 세포형태를 관찰 할 수 있었다. Y27632로 ROCK를 저해 했을 때 FRC의 액틴 세포골격과 세포형태 변화가 유도 되었다. FRC에서 p-MLC가 액틴과 함께 SF 구성성분을 이루었다. FRC세포 추출물로 Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) 교환활성을 확인했다. Agonistic anti-$LT{\beta}R$ antibody로 $LT{\beta}R$을 자극 했을 때 Rho-GDP/GTP 교환활성이 크게 감소했다. MLCK 저해처럼 $LT{\beta}R$ 자극은 MLC의 인산화를 감소시켰다. Agonistic anti-$LT{\beta}R$ antibody-treated FRC에서 세포골격 구성요소인 세포막과 세포골격 링커 역할을 하는 p-ezrin의 인산화는 감소 되었고 b- actin, 그리고 tubulin 발현도 줄었다. 이런 결과는 FRC의 $LT{\beta}R$ 신호전달을 통한 SF 조절에는 MLCK와 ROCK가 관여하고 있다는 것을 알 수 있었다.

Mitochondrial dysfunction reduces the activity of KIR2.1 K+ channel in myoblasts via impaired oxidative phosphorylation

  • Woo, JooHan;Kim, Hyun Jong;Nam, Yu Ran;Kim, Yung Kyu;Lee, Eun Ju;Choi, Inho;Kim, Sung Joon;Lee, Wan;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Myoblast fusion depends on mitochondrial integrity and intracellular $Ca^{2+}$ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with $[Ca^{2+}]_i$ regulation in normal and mitochondrial DNA-depleted(${\rho}0$) L6 myoblasts. The ${\rho}0$ myoblasts showed impaired myotube formation. The inwardly rectifying $K^+$ current ($I_{Kir}$) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated $Ca^{2+}$ channel and $Ca^{2+}$-activated $K^+$ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the $I_{Kir}$. The ${\rho}0$ myoblasts showed depolarized resting membrane potential and higher basal $[Ca^{2+}]_i$. Our results demonstrated the specific downregulation of $I_{Kir}$ by dysfunctional mitochondria. The resultant depolarization and altered $Ca^{2+}$ signaling might be associated with impaired myoblast fusion in ${\rho}0$ myoblasts.

Regulatory Effect of Spray-Dried Lactiplantibacillus plantarum K79 on the Activation of Vasodilatory Factors and Inflammatory Responses

  • Ki Hwan Kim;Yongjin Hwang;Seok-Seong Kang
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.216-224
    • /
    • 2024
  • The reduction of nitric oxide (NO) bioavailability in the endothelium induces endothelial dysfunction, contributing to the development of hypertension. Although Lactobacillus consumption decreases blood pressure, intracellular signaling pathways related to hypertension have not been well elucidated. Thus, this study examined the effect of spray-dried Lactiplantibacillus plantarum K79 (LpK79) on NO production, intracellular signaling pathways, and inflammatory responses related to vascular function and hypertension. NO production was assessed in human umbilical vein endothelial cells (HUVECs) treated with LpK79. Endothelial NO synthase (eNOS) and intracellular signaling molecules were determined using Western blot analysis. LpK79 dose-dependently increased NO production and activated eNOS via the phosphoinositide 3-kinase/Akt signaling pathway HUVECs. Moreover, LpK79 mitigated the activation of crucial factors pivotal for vascular contraction in smooth muscle cells, such as phospholipase Cγ, myosin phosphatase target subunit 1, and Rho-associated kinase 2. When HUVECs were treated with LpL79 in the presence of Escherichia coli lipopolysaccharide (LPS), LpK79 effectively suppressed mRNA and protein expression of pro-inflammatory mediators induced by E. coli LPS. These results suggest that LpK79 provided a beneficial effect on the regulation of vascular endothelial function.

Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis

  • Kim, Suji;Lim, Jae Hyang;Woo, Chang-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • 제37권4호
    • /
    • pp.269-276
    • /
    • 2020
  • Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.

Calcium Sensitization Induced by Sodium Fluoride in Permeabilized Rat Mesenteric Arteries

  • Yang, En-Yue;Cho, Joon-Yong;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.51-57
    • /
    • 2010
  • It was hypothesized that NaF induces calcium sensitization in $Ca^{2+}$-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with $\beta$-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to $Ca^{2+}$ (decreased $EC_{50}$ and increased $E_{max}$). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in $Ca^{2+}$-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and $GTP{\gamma}S$-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a $Ca^{2+}$ dependent manner in $\beta$-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

사람의 정상 피부세포 및 폐세포의 발암에 미치는 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin의 영향 (Tumorigenic Effects of 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin in Normal Human Skin and Lung Fibroblasts)

  • 강미경;염태경;김강련;김옥희;강호일
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권3호
    • /
    • pp.77-85
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although TCDD is recognized as potent carcinogens, relatively little is known about their role in the tumor promotion and carcinogenesis. It is known that TCDD can increase of cancer risk from various types of tissue by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. In this study, effects of TCDD on cellular proliferation of normal human skin and lung fibroblasts, Detroit551 and WI38 cells were investigated. In addition, to enhance our understanding of TCDD-mediated carcinogenesis, we have investigated process in which expression of Erk1/2, cyclinD1, oncogene such as Ha-ras and c-myc, and their cognate signaling pathway. TCDD that are potent activators of AhR-mediated activity was found to induce significant increase of cytochrome P4501A1 mRNA expression, suggesting a presence of functional AhR. These results support that CYP1A1 enzyme may be involved in the generation of TCDD-induced toxicity. Moreover mitogen-activated protein kinases (MARKs) phosphorylation and cyclin D1 overexpression are induced by TCDD, which corresponded with the progression of cellular proliferation. However, TCDD did not affected Ha-ras and c-myc mRNA expression. Taken together, it seems that TCDD are could be a part of cellular proliferation in non-tumorigenic normal human cells such as Detroit551 and WI38 cells through the upregulation of MAPKs signaling pathway regulating growth of cell population. Therefore, AhR-activating TCDD could potentially contribute to tumor promotion and Detroit551 and WI38 cells have been used as a detection system of tumorigenic effects of TCDD.

  • PDF