• Title/Summary/Keyword: RhoA/ROCK

Search Result 81, Processing Time 0.023 seconds

Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils

  • Ham, Hwa-Yong;Kang, Shin-Hae;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.

Expression patterns of Rho-associated protein kinase signaling pathway-related genes in mouse submandibular glands

  • Kim, Ki-Chul;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.81-84
    • /
    • 2021
  • Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.

Signals of MLCK and ROCK Pathways Triggered via Lymphotoxin β Receptor are Involved in Stress Fiber Change of Fibroblastic Reticular Cells (FRC에서 Lymphotoxin β receptor의 자극은 MLCK와 ROCK의 이중 신호전달 경로를 통해 stress fiber 변화에 관여)

  • Kim, Dae Sik;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.256-264
    • /
    • 2019
  • Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. In contrast, MLCK and ROCK play critical roles in the regulation of stress fiber (SF) formation in cells. To determine whether $LT{\beta}R$ stimulation in fibroblastic reticular cells (FRCs) is involved in these signaling pathways, myosin light chain kinase inhibitor-7 (ML-7) was used to inhibit them. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic anti-$LT{\beta}R$ antibody-treated cells. The inhibition of ROCK activity with Y27632-induced changes in actin cytoskeleton organization and cell morphology in FRCs. Actin bundles rearranged into SFs, and phospho-myosin light chain (p-MLC) co-localized in FRCs. We checked the level of Rho-guanosine diphosphate (RhoGDP)/guanosine triphosphate (GTP) exchange activity using FRC lysate. When $LT{\beta}R$ was stimulated with agonistic anti-$LT{\beta}R$ antibodies, Rho-GDP/GTP exchange activity was markedly reduced. Regarding $LT{\beta}R$ signaling with a focus on MLCK inhibition, we showed that the phosphorylation of MLCs was reduced by $LT{\beta}R$ stimulation in FRCs. Cytoskeleton components, such as tubulin, b-actin, and phospho-ezrin proteins acting as membrane-cytoskeleton linkers, were produced in de-phosphorylation, and they reduced expression in agonistic anti-$LT{\beta}R$ antibody-treated FRCs. Collectively, the results suggested that MLCK and ROCK were simultaneously responsible for SF regulation triggered by $LT{\beta}R$ signaling in FRCs.

Effects of Rudbeckia laciniata Extract on Phagocytosis of Serum-Opsonized Zymosan Particles in Macrophages (대식세포의 혈청으로 식균된 자이모잔의 탐식능에 대한 삼잎국화 추출물의 효과)

  • Kim, Jun-Sub
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.341-346
    • /
    • 2016
  • Phagocytosis is a primary and an essential step of host defense, and is triggered by the interaction of particles with specific receptor of macrophages. In this study, we investigated the effect of extracts of Rudbeckia laciniata (RLE) on the phagocytic activity of macrophage, by monitoring the phagocytosis-associated signal transduction. RLE markedly increased phagocytosis of serum-opsonized zymosan particles (SOZ), while phagocytosis of IgG-opsonized zymosan particles (IOZ) or none-opsonized zymosan particles (NOZ) remained unaffected. However, RLE did not affect the binding of opsonized zymosan particles (OZ) with the cell surface of macrophage. This suggests that RLE may regulate SOZ-induced intracellular signaling during phagocytosis of macrophage. To confirm this hypothesis, we investigated whether RLE was involved in the RhoA-mediated signal transduction during phagocytosis of SOZ. Inhibitors of the RhoA-mediated signaling pathway, such as Y-27632 (for ROCK), ML-7 (for MLCK), and Tat-C3 (for RhoA), totally blocked phagocytosis of SOZ enhanced by RLE, as well as phagocytosis of SOZ. Additionally, RhoA activity was markedly increased when cells were treated with RLE, suggesting that RLE could increase the phagocytic activity of macrophage via RhoA-ROCK/MLCK signal pathway. Thus, RLE may be used to develop functional foods for immunity.

The Convergence Effect of Phloretin Existent in Plants on Vascular Contractility (플로레틴(Phloretin)의 혈관내피수축 융합효과와 관련기전 연구)

  • Bang, Joon Seok;Je, Hyun Dong;Min, Young Sil
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.143-149
    • /
    • 2020
  • This study tried to observe the ability to inhibit vasocontriction in phloretin - the primary ingredient of apple tree leaves and the Manchurian apricot - through ROCK(Rho-associdated, coiled-coil containing protein kinase) inactivation in rat aortae. A piece of artery that was separated from Sprague-Dawley male rats and retained or damaged the endothelium was suspended in myograph tank with two metal rings, the lower ring fixed to the bottom of the tank, and the upper ring connected to the isotonic force transducer. Interestingly, phloretin inhibited fluoride- or phorbol ester-provoked contraction implying that additional pathways dissimilar from endothelial nitric oxide synthesis such as ROCK or MEK (mitogen activated protein kinase kinase) inactivation might be involved in the vasorelaxation. Therefore, this study provides that phloretin participates in the reduction of ROCK or MEK activity in smooth muscle in addition to the endothelial-dependent action of the endotheliuim in complete blood vessels, and consequently inhibits actin-myosin interaction in smooth muscle. Furthermore, phloretin inhibited thromboxane A2-induced contraction suggesting the mechanism including inhibition of ROCK and MEK.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Activation of Small GTPases RhoA and Rac1 Is Required for Avian Reovirus p10-induced Syncytium Formation

  • Liu, Hung-Jen;Lin, Ping-Yuan;Wang, Ling-Rung;Hsu, Hsue-Yin;Liao, Ming-Huei;Shih, Wen-Ling
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.396-403
    • /
    • 2008
  • The first ORF of the ARV S1133 S1 segment encodes the nonstructural protein p10, which is responsible for the induction of cell syncytium formation. However, p10-dependent signaling during syncytium formation is fully unknown. Here, we show that dominant negative RhoA, Rho inhibitor C3 exoenzyme, ROCK/Rho-kinase inhibitor Y-27632 and Rac1 inhibitor NSC23766 inhibit p10-mediated cell fusion. p10 over-expression is concomitant with activation and membrane translocation of RhoA and Rac1, but not cdc42. RhoA and Rac1 downstream events, including JNK phosphorylation and transcription factor AP-1 and $NF-{\kappa}B$ activation, as well as MLC expression and phosphorylation are simultaneously activated by p10. p10 point mutant T13M possessed 20% fusion-inducing ability and four p10 fusion-deficient mutants V15M, V19M, C21S and L32A reduced or lost their ability to activate RhoA and Rac1 signaling. We conclude that p10-mediated syncytium formation proceeds by utilizing RhoA and Rac1-dependent signaling.

miR-124 Inhibits Growth and Invasion of Gastric Cancer by Targeting ROCK1

  • Hu, Cong-Bing;Li, Qiao-Lin;Hu, Jian-Fei;Zhang, Qiang;Xie, Jian-Ping;Deng, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6543-6546
    • /
    • 2014
  • MicroRNAs (miRNAs) act as critical regulators of genes involved in many biological processes. Aberrant alteration of miRNAs have been found in many cancers, including gastric cancer (GC), but the molecular mechanisms are not well understood. Herein, we investigated the role of miR-124 in GC. We found that its expression was significantly reduced in both GC tissue samples and cell lines. Forced expression of miR-124 suppressed GC cell proliferation, migration, and invasion. Furthermore, the Rho-associated protein kinase (ROCK1) was identified as a direct target of miR-124 in GC cells. Finally, silencing of ROCK1 showed similar effects as miR-124 overexpression, while supplementation of ROCK1 remarkably restored the cell growth and invasion inhibited by miR-124. Together, our data demonstrate that miR-124 acts as a tumor suppressor by targeting ROCK1, and posit miR-124 as a novel strategy for GC treatment.