• Title/Summary/Keyword: Rheology slurry

Search Result 26, Processing Time 0.024 seconds

Stress Concentration Analysis of Grain Refinement in Rheology Casting Process

  • Z., Yang;P. K., Seo;J.H., Ko;Y. S., Jung;C. G., Kang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.668-671
    • /
    • 2004
  • The mechanics of the dendrite fragmentation is a very important aspect of grain refinement in rheocasting. In this work, the stress field of the dendrite stirred in the semisolid slurry was simulated by Metlab 6.0 software. The result shows that stress concentration at the root of the dendrite arms is great enough to cause plastic deformation though the agitation is moderate. Accordingly, dendrite fragmentation was suggested to be caused by fractured after fatigue erosion.

  • PDF

Rheological Perspectives on Direct Printing Processes

  • An, Gyeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.2-1.2
    • /
    • 2011
  • With recent advances in materials and products, materials processing experiences new challenges. More particles and polymers in material side and thinner and faster deformations in processing side. It happens in most emergying industries such as manufacturing of batteries, solar cells, multi-layer chips, displays, printed electronics, to list a few. In most cases, they are manufactured by coating or printing process, which is defined as a process in which gas is replaced by liquid on a substrate. In this sense, casting, inkjet printing, and roll-to-roll printing are all included. The printing process consists of three unit processes. As the materials used in the above mentioned applications typically contain a large amount of particles with polymers and solvents, they continuously change microstructures during preparation, flow, and even drying. However, little is known about the flow characteristics of such complex fluids and less is known about how to design and control the process. Therefore, for better control of the process and for better quality of the product, we need to understand the flow characteristics of these complex fluids under extremely fast flow environment.

  • PDF

Forging Process with Al6061 Alloy Rheology Material by Electromagnetic Stirring System (전자교반을 응용한 Al6061 레오로지 소재의 단조공정)

  • Kang, S.S.;Oh, S.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.443-446
    • /
    • 2007
  • The semi-solid process has been developed near net-shape components for kinds of methods. Thixo-forming with reheating prepared billet and rheo-forming with cooled melt until semi-solid state. Material is applied electromagnetic stirring system to slurry with aluminum 6061 alloy. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. The mechanical properties are compared to forge sample with to apply heat treatment T6. This study is researched function a virtual pressure and fine shape zone. Optimum pressure is found to prevent defect of porosity.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder (합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조)

  • Kim, Eunsung;Han, Kyusung;Choi, Junghoon;Kim, Jinho;Kim, Ungsoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.532-538
    • /
    • 2021
  • In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.

Analysis of Starch Properties and Application of Cross-linking Agent for Improving Adhesive Strength of Corrugated Board (골판지 접착 강도 향상을 위한 전분 특성 분석과 가교제의 적용)

  • Jung, Chul-Hun;Park, Jong-Moon;Lee, Jin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Structural stability and shock absorption are important properties for corrugated board. In order to maintain structural stability, adhesive properties between top/bottom liners and corrugated medium are not only essential but also important for productivity and product quality. Borax has been an essential ingredient in corrugating adhesive solution. Borax increases viscosity, bonding between starchs and green adhesive bond. The objective of this research is to improving adhesive strength and viscosity stability by adding cross-linking agent instead of borax. Rheology and penetration of main starch gelatinization slurry were affected by borax addition level. Borax increased viscosity and decreased viscosity stability, while cross-linking additives increased viscosity stability and adhesive strength by anchoring effect.