DOI QR코드

DOI QR Code

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder

합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조

  • Kim, Eunsung (Korea Institute of Ceramic Engineering & Technology) ;
  • Han, Kyusung (Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Junghoon (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jinho (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Ungsoo (Korea Institute of Ceramic Engineering & Technology)
  • 김은성 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 최정훈 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 김응수 (한국세라믹기술원 이천분원)
  • Received : 2021.08.16
  • Accepted : 2021.09.13
  • Published : 2021.09.27

Abstract

In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.

Keywords

Acknowledgement

This work was supported by Ceramic Strategic Research Program through Korea Institute of Ceramic Engineering & Technology (KICET).

References

  1. Y. Kobayashi, in Proceedings of the 37th Seminar on High-Temperature Ceramics (Osaka, Japan, 2005). ed. p. 17.
  2. G. Cunge, B. Pelissier, O. Joubert, R. Ramos and C. Maurice, Plasma Sourc. Sci. Tech., 14, 599 (2005). https://doi.org/10.1088/0963-0252/14/3/025
  3. D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011). https://doi.org/10.1016/j.tsf.2011.04.049
  4. Y. Shiba, A. Teramoto, T. Goto, Y. Kishi, Y. Shirai and S. Sugaha, J. Vac. Sci. Technol., A, 35, 021405 (2017). https://doi.org/10.1116/1.4975143
  5. T. K. Lin, W. K. Wang, S. Y. Huang, C. T. Tasi and D. S. Wuu, Nanomaterials (Basel), 7, 183 (2017). https://doi.org/10.3390/nano7070183
  6. R. Tahara, T. Tsunoura, K. Yoshida, T. Yano and Y. Kishi, Jpn. J. Appl. Phys., 57, 06JF04 (2018). https://doi.org/10.7567/JJAP.57.06JF04
  7. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao and Y. Fu, J. Eur. Ceram. Soc., 39, 661 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  8. J. Deckers, J. Vleugels, J.-P. Kruth, J. Ceram. Sci. Technol., 05, 245 (2014).
  9. R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu and Z. Xie, Ceram. Int., 44, 3412 (2018). https://doi.org/10.1016/j.ceramint.2017.11.135
  10. I. L. de Camargo, M. M. Morais, C. A. Fortulan and M. C. Branciforti, Ceram. Int., 47, 11906 (2021). https://doi.org/10.1016/j.ceramint.2021.01.031
  11. T. Zheng, W. Wang, J. Sun, J. Liu and J. Bai, Ceram. Int., 46, 8682 (2020). https://doi.org/10.1016/j.ceramint.2019.12.102
  12. M. Krkobabic, D. Medarvic, S. Cvijc, B. Grujic and S. Ibric, Int. J. Pharm., 572, 118790 (2019). https://doi.org/10.1016/j.ijpharm.2019.118790
  13. Z. Chen, J. Li, C. Liu, Y. Liu, J. Zhu and C. Lao, Ceram. Int., 45, 11549 (2019). https://doi.org/10.1016/j.ceramint.2019.03.024
  14. K. Zhang, C. Xie, G. Wang, R. Hea, G. Ding, M. Wang, D. Dai and D. Fang, Ceram. Int., 45, 203 (2019). https://doi.org/10.1016/j.ceramint.2018.09.152
  15. C. J. Bae and J. W. Halloran, J. Eur. Ceram. Soc., 39, 4299 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.034
  16. R. Srivastavab, J. Liua, C. Hea and Y. Sun, Mater. Sci. Eng., C, 88, 25 (2018). https://doi.org/10.1016/j.msec.2018.01.011
  17. A. M. Homola and H. V. Nguyen, J. Chem. Phys., 94, 2346 (1991). https://doi.org/10.1063/1.459906
  18. A. Thakur, A. K. Banthia and B. R. Maw, J. Appl. Polym. Sci., 58, 959 (1995). https://doi.org/10.1002/app.1995.070580601
  19. C. Nason, T. Roper, C. Hoyle and J. A. Pojman, Macromolecules, 38, 5506 (2005). https://doi.org/10.1021/ma048569y