Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.532

Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder  

Kim, Eunsung (Korea Institute of Ceramic Engineering & Technology)
Han, Kyusung (Korea Institute of Ceramic Engineering & Technology)
Choi, Junghoon (Korea Institute of Ceramic Engineering & Technology)
Kim, Jinho (Korea Institute of Ceramic Engineering & Technology)
Kim, Ungsoo (Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 532-538 More about this Journal
Abstract
In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 ℃. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.
Keywords
digital light processing; yttrium oxyfluoride; monomer mixture; photopolymerization; rheology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Kobayashi, in Proceedings of the 37th Seminar on High-Temperature Ceramics (Osaka, Japan, 2005). ed. p. 17.
2 G. Cunge, B. Pelissier, O. Joubert, R. Ramos and C. Maurice, Plasma Sourc. Sci. Tech., 14, 599 (2005).   DOI
3 D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011).   DOI
4 Y. Shiba, A. Teramoto, T. Goto, Y. Kishi, Y. Shirai and S. Sugaha, J. Vac. Sci. Technol., A, 35, 021405 (2017).   DOI
5 T. K. Lin, W. K. Wang, S. Y. Huang, C. T. Tasi and D. S. Wuu, Nanomaterials (Basel), 7, 183 (2017).   DOI
6 R. Tahara, T. Tsunoura, K. Yoshida, T. Yano and Y. Kishi, Jpn. J. Appl. Phys., 57, 06JF04 (2018).   DOI
7 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao and Y. Fu, J. Eur. Ceram. Soc., 39, 661 (2019).   DOI
8 J. Deckers, J. Vleugels, J.-P. Kruth, J. Ceram. Sci. Technol., 05, 245 (2014).
9 I. L. de Camargo, M. M. Morais, C. A. Fortulan and M. C. Branciforti, Ceram. Int., 47, 11906 (2021).   DOI
10 T. Zheng, W. Wang, J. Sun, J. Liu and J. Bai, Ceram. Int., 46, 8682 (2020).   DOI
11 Z. Chen, J. Li, C. Liu, Y. Liu, J. Zhu and C. Lao, Ceram. Int., 45, 11549 (2019).   DOI
12 K. Zhang, C. Xie, G. Wang, R. Hea, G. Ding, M. Wang, D. Dai and D. Fang, Ceram. Int., 45, 203 (2019).   DOI
13 R. Srivastavab, J. Liua, C. Hea and Y. Sun, Mater. Sci. Eng., C, 88, 25 (2018).   DOI
14 C. Nason, T. Roper, C. Hoyle and J. A. Pojman, Macromolecules, 38, 5506 (2005).   DOI
15 A. M. Homola and H. V. Nguyen, J. Chem. Phys., 94, 2346 (1991).   DOI
16 A. Thakur, A. K. Banthia and B. R. Maw, J. Appl. Polym. Sci., 58, 959 (1995).   DOI
17 R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu and Z. Xie, Ceram. Int., 44, 3412 (2018).   DOI
18 M. Krkobabic, D. Medarvic, S. Cvijc, B. Grujic and S. Ibric, Int. J. Pharm., 572, 118790 (2019).   DOI
19 C. J. Bae and J. W. Halloran, J. Eur. Ceram. Soc., 39, 4299 (2019).   DOI