• Title/Summary/Keyword: Rheological behavior

Search Result 466, Processing Time 0.03 seconds

Physicochemical Characteristics of Rice Flour Gelatinized by Extrusion-Cooking (압출성형에 의한 알파미분의 물리화학적 특성)

  • Han, Ouk;Lee, Sang-Hyo;Lee, Hyun-Yu;Kim, Young-Myoung;Min, Byong-Lyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.470-475
    • /
    • 1988
  • The extrusion-cooking method was used to make gelatinized rice extrudate from rice grits of the Chuchung and the Samgang varieties. The water contents of raw rice grits varied from 15% to 25%, and the physicochemical properties of extrudates were evaluated. Low moisture content showed high expansion ratio in rice extrudate and resulted in some decrease in gelatinization, bulk density and break strength. Increasing the water content to 25% resulted in increase in water absoption index but decrease in water solubility index. With regards to Brabender Amylograph values and rheological patterns, higher moisture content in raw materials revealed stronger pseudoplastic flow behavior with lower viscogram property. Hunter's color values of rice flours extruded at low water content were low in b values. Scanning electron microscopy demonstrated the break-down of starch granules during extrusion.

  • PDF

A COMPARATIVE STUDY BETWEEN DEGREE OF CONVERSION AND FLEXURAL STRENGTH OF COMPOSITE RESINS

  • Lee Seong-Hee;Pae Ahran;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.333-342
    • /
    • 2006
  • Statement of problem. Although many studies have been carried out to investigate the correlation between the degree of conversion and the flexural strength of composite resins, there is minimal information in the literature attempting to compare degree of conversion, flexural strength and their correlation between restorative composite resins and flowable composite resins. Purpose. The purposes of this study were to measure the degree of conversion and flexural strength of composite resins with different rheological behavior and to correlate the two properties. Materials and methods. Four restorative (Vit-1-escence, Z-250, Tetric ceram, Esthet-X) and four flowable (Aeliteflo, Admiraflow, Permaflo, Revolution) light-curing composite resins were investigated. The degree of conversion(DC) was analyzed with Fourier transfer infra-red spectroscopy(FTIR) spectrum by a potassium bromide(KBr) pellet transmission method. The spectrum of the unpolymerized specimen had been measured before the specimen was irradiated for 60s with a visible light curing unit. The Poiymerized specimen was scanned for its in spectrum. The flexural strength(FS) was measured with 3-point bending test according to ISO 4049 after storage in water at $37^{\circ}C$ for 24 hours. The data were statistically analyzed by an independent sample t-test and one-way ANOVA at the significance level of 0.05. The dependence of flexural strength on the degree of conversion was also analyzed by regression analysis. Results. Mean DC and FS values ranged from 43% to 61% and from 84.7MPa to 156.7MPa respectively. DC values of the flowable composite resins were significantly higher than those of restorative composite resins (P < 0.05). The FS values of restorative composite resins were greater than those of flowable composite resins. No statistically significant correlation was observed between the DC and the FS tested in any of the composites. The dependence of FS on DC in restorative or flowable composite resins was not significant. Conclusion. It can be concluded that radical polymerization of the organic matrix is not a major factor in determining flexural strength of the commercially available composite resins.

Flow Characteristics Investigation of Gel Propellant with Al2O3 Nano Particles in a Curved Duct Channel (Al2O3 나노입자가 젤(Gel) 추진제의 곡관 유동특성에 미치는 연구)

  • Oh, Jeongsu;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-55
    • /
    • 2013
  • Curved duct channel flow characteristics for non-Newtonian gel fluid is investigated. A simulant gel propellant mixed by Water, Carbopol 941 and NaOH solution has been chosen to analyze the gel propellant flow behavior. Rheological data have been measured prior to the flow analysis where water-gel propellant and water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number examined by the numerical simulation in the U-shape duct flow reveals that although water-gel-nano propellants have higher apparent viscosity, the critical Dean number do show no notable difference for both the two gel propellant. It is found that the power-law index may be a dominant parameter in determining the critical Dean number and that the gel with particles addition may be more vulnerable to Dean instability.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

Fabrication of Porous Alumina Mold for the Casting Process of Fine Ceramics (Fine Ceramics의 Casting공정을 위한 다공질 알루미나 몰드의 제조)

  • 박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.89-96
    • /
    • 1999
  • Manufacturing conditions of the porous alumina mold were established to overcome various limits of the gypsum mold. For the preparations of the porous alumina mold, an activated charcoal was added to the Al2O3 with the wt% variation and then mixed. The binary slurry was study dispersed based on the examination of the ESA and rheological behaviro. The cylinder type alumina mold was cast in the gyspum mold and characterized by the shrinkage rate at the variable sintering temperature and the resistance against wear. It was proper to make a sintering of the Al2O3 by the surface diffusion which was non-shrinkage sintering mechansim, and intergranular neck growed stronger while sintering was being made. We studied a sintering by three categories; 1) thermodynamic method below 1,000$^{\circ}C$, 2) kinetic method above 1,000$^{\circ}C$ and 3) combined method. In the results of the respective works, combined method was superiro to the others. The prepared Al2O3 mold had relatively high strength, low drying rate, the resistance against the acid or base and good casting behavior.

  • PDF

A Study on the Millbase Dispersion for LCD Color Filters (LCD 컬러필터용 밀베이스의 분산 연구)

  • Jung, Il-Bong;Ahn, Suk-Chul;Nam, Su-Yong
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The properties of the dispersion of the red, green, and blue pigments were investigated for the manufacture of the millbase of LCD color filters. Their physical properties and viscosity were controlled to apply to the screen printing in order to substitute the existing photolithography method. The best dispersion properties were obtained with dispersant BYK-2000 and monomer EB-140. The millbase was pre-mixed at 500 rpm for 30 min, and dispersed at 4000 rpm for 5 - 6 hour by Torus Mill. The resulting particle sizes were $100{\sim}110\;nm$ for red, $50{\sim}70\;nm$ for green, and $60{\sim}80\;nm$ for blue. When the millbase viscosity was 200-300 cps in the low viscosity formulation, an efficient impact of the beads on pigments was achieved. The dispersion properties were confirmed from the rheological behavior and color characteristics.

  • PDF

Flow Simulation of Simulant Gel Propellant with $Al_2O_3$ Nano Particles in A U-Type Duct (U-자형 덕트에서의 $Al_2O_3$ 나노 입자를 포함한 모사 Gel 추진제의 유동 특성 수치해석)

  • Oh, Jeong-Su;Park, Ji-Hoon;Jang, Seok-Pil;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.377-382
    • /
    • 2010
  • The Present study uses non-Newtonian simulant gel propellant mixed by Water, Carbopol 941, and NaOH solution in order to analyze the gel propellant flow behavior. Rheological data have been measured and obtained prior to the analysis of flow characteristics where water-gel propellant as well as water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number were examined by numerical simulation of gel propellant in the U-shape duct flow. It is found that though gel-nano propellants have higher apparent viscosity, the critical Dean number did not showed notable difference with respect to the water-gel propellant. It is believe that this is due to the fact that the power law index of both propellants have close value, as was demonstrated by Fellouah et al.[1]

  • PDF

An Experimental Study of Cuttings Transport in Directional Slim Hole Drilling (방향성 소구경 굴착의 입자 이송특성에 관한 연구)

  • Han, Sang-Mok;Kim, Jeong-Hwan;Hwang, Young-Kyu;Woo, Nam-Sub;Kim, Young-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.20-25
    • /
    • 2012
  • During drilling, the precipitation velocity of cuttings within an annulus depends on the density and configuration of the cuttings, and on the density, viscosity, and rheological characteristics of the drilling fluid. In directional drilling in particular, it is difficult to adjust and control the cuttings. In contrast to vertical drilling, it is very important to evaluate the flow characteristics of a drilling flow field. However, research on the transfer features of cuttings is inadequate. In this study, in order to identify transfer features of cuttings, an experiment was performed under wide-ranging conditions by constructing a slim hole annulus ($44mm{\times}30mm$) device. In this experiment, the particle volume fraction were influenced by particle size, particle concentration within the flow, pipe rotation, flow volume, and inclination of the annulus. In addition, a mathematical formula for volumetric concentration was deduced and compared to the test results and behavior of cuttings under the other drilling condition was made to be predicted. Therefore, this study can provide meaningful data for vertical and horizontal drilling, and for directional drilling.

Thermoresponsive Graft Copolymers of Hyaluronic Acid (히알루론산의 온도감응성 그래프트 공중합체)

  • Choi, So-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.223-227
    • /
    • 2011
  • Stimuli-responsive polymers have been investigated as the materials playing the critical roles in various applications. Thermoresponsive graft copolymers, poly (N-isopropylacrylamide)-g-hyaluronic acid (PNIPAAm-g-HA) and elastin-like peptide-g-hyaluronic acid (ELP-g-HA), were synthesized by coupling carboxylic polymers (PNIPAAm-COOH or ELP) to biocompatible HA through amide linkages. Thermoresponsive behavior was observed in both the copolymers, and the results of turbidity measurement were consistent with the results of rheological examination. Among the two copolymers, the ELP graft copolymer shows less cooperative LCST transition than the PNIPAAm case. As the content of graft chains of PNIPAAm and ELP increases, viscosity increases, and the increase was larger in PNIPAAm case at a graft content. These results shows us that the introduction of grafts provides thermosensitivity to biocompatible HA, whose characteristics can be engineered.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.