Browse > Article

Thermoresponsive Graft Copolymers of Hyaluronic Acid  

Choi, So-Young (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Polymer(Korea) / v.35, no.3, 2011 , pp. 223-227 More about this Journal
Abstract
Stimuli-responsive polymers have been investigated as the materials playing the critical roles in various applications. Thermoresponsive graft copolymers, poly (N-isopropylacrylamide)-g-hyaluronic acid (PNIPAAm-g-HA) and elastin-like peptide-g-hyaluronic acid (ELP-g-HA), were synthesized by coupling carboxylic polymers (PNIPAAm-COOH or ELP) to biocompatible HA through amide linkages. Thermoresponsive behavior was observed in both the copolymers, and the results of turbidity measurement were consistent with the results of rheological examination. Among the two copolymers, the ELP graft copolymer shows less cooperative LCST transition than the PNIPAAm case. As the content of graft chains of PNIPAAm and ELP increases, viscosity increases, and the increase was larger in PNIPAAm case at a graft content. These results shows us that the introduction of grafts provides thermosensitivity to biocompatible HA, whose characteristics can be engineered.
Keywords
hyaluonic acid; hydrogel; N-isopropylacrylamide; thermoresponse; stimuli responsive;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Y. Yuk, Y. M. Choi, J. S. Pack, S. Y. Kim, G. N. Pack, and K. M. Huh, Polymer(Korea), 33, 469 (2009).
2 H. G. Ho, S. H. Pack, C. H. Pack, and J. H. Lee, Polymer (Korea), 33, 353 (2009).
3 Z. Zhao, Z. Li, Q. Xia, H. Xi, and Y. Lin, Eur. Polym. J., 44, 1217 (2008).   DOI   ScienceOn
4 D. Mortisen, M. Peroglio, M. Alini, and D. Eglin, Biomacromolecules, 11, 1261 (2010).   DOI   ScienceOn
5 J. P. Chen and T. H. Cheng, Polymer, 50, 107 (2009).   DOI   ScienceOn
6 J. Lee, C. Macosko, and D. Urry, Macromolecules, 34, 4114 (2001).   DOI   ScienceOn
7 J. L. Drury, Biomaterials, 24, 4337 (2003).   DOI   ScienceOn
8 H. Tan, C. M. Ramirez, N. Miljkovic, H. Li, J. P. Rubin, and K. G. Marra, Biomaterials, 30, 6844 (2009).   DOI   ScienceOn
9 K. Moriyama, T. Ooya, and N. Yui, J. Control. Release, 59, 77 (1999).   DOI   ScienceOn
10 D. I. Ha, S. B. Lee, M. S. Chong, Y. M. Lee, S. Y. Kim, and Y. H. Park, Macromol. Res., 14, 87 (2006).   DOI
11 I. L. Hong and Y. J. Kim, Polymer(Korea), 32, 561 (2008).
12 J. H. Cho, S. H. Kim, K. D. Park, M. C. Jung, W. I. Yang, S. W. Han, J. Y. Noh, and J. W. Lee, Biomaterials, 25, 5743 (2004).   DOI   ScienceOn
13 S. Ifuku and J. F. Kadla, Biomacromolecules, 9, 3308 (2008).   DOI   ScienceOn
14 M. K. Yoo, Y. K. Sung, Y. M. Lee, and C. S. Cho, Polymer, 41, 5713 (2000).   DOI   ScienceOn
15 D. Urry, J. Phys. Chem. B, 101, 11007 (1997).   DOI   ScienceOn
16 X. Z. Shu, Y. Liu, Y. Luo, M. C. Roberts, and G. D. Prestwich, Biomacromolecules, 3, 1304 (2002).   DOI   ScienceOn
17 S. Ohya, Y. Nakayama, and T. Matsuda, Biomacromolecules, 2, 856 (2001).   DOI   ScienceOn