• Title/Summary/Keyword: Rhenium-186

Search Result 3, Processing Time 0.015 seconds

NUCLEAR DATA MEASUREMENT OF 186RE PRODUCTION VIA VARIOUS REACTIONS

  • Bidokhti, Pooneh Saidi;Sadeghi, Mahdi;Fateh, Behrooz;Matloobi, Mitra;Aslani, Gholamreza
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.600-607
    • /
    • 2010
  • Rhenium-186, having a half-life of 90.64 h, is an important radionuclide, used in metabolic radiotherapy and radio immunotherapy. $^{186}Re$ hydroxyethylidene diphosphonate (HEDP) is a new compound used for the palliation of painful skeletal metastases. Its production is achieved via charged-particle-induced reactions; the data are available in EXFOR library. For the work discussed in this paper, production of $^{186}Re$ was done via $^{nat}W(p,n)^{186}Re$ nuclear reaction. Pellets of $^{nat}W$ were used as targets and were irradiated with 15, 17.5, 20, 22.5, 25 MeV proton beams at 5 ${\mu}A$ current. The radiochemical separation was performed by the ion exchange chromatography method. The production yield achieved at 25 MeV was 1.91 $MBq{\cdot}{\mu}A^{-1}{\cdot}h^{-1}$. Excitation functions for the $^{186}Re$ radionuclide, via $^{186}W(p,n)^{186}Re$ and $^{186}W(d,2n)^{186}Re$ reactions were calculated by ALICE-ASH and TALYS-1.0 codes to validate and fit the experimental data and to obtain a recommended set of data for $^{186}W(p,n)^{186}Re$ reaction. Required thickness of the targets was obtained by SRIM code for each reaction.

Production of Re-188 (Rhenium-188 생산)

  • Yang, Seung-Dae;Suh, Yong-Sup;Kim, Sang-Uk;Lim, Sang-Moo
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.189-192
    • /
    • 1999
  • $^{188}Re$ (${\beta}^-=2.2$ MeV; ${\gamma}^-$=155 keV; $T_{1/2}$=16.9 hours) is an attractive therapeutic radioisotope which is produced from decay of reactor-produced tungsten-188 parent ($T_{1/2}$=69 days). $^{188}W$ has been produced from the double neutron capture reaction of $^{186}W.\;^{188}Re$ can be easily obtained by elution of saline on alumina based $^{188}W/^{188}Re$ generator, which is commercially available. Complexes labelled with $^{188}Re$ have been developed for the radiotherapy treatment of diseases because of the desirable nuclear properties of the radioisotope and it's chemical properties similar to those of technetium, a well established diagnostic agent.

  • PDF

Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study

  • Abdollah Khorshidi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1871-1877
    • /
    • 2023
  • The main goal of the coordinated project development of therapeutic radiopharmaceuticals of Y-90 and Re-188 is to exploit advancements in radionuclide production technology. Here, direct and indirect production methods with medium reactor and cyclotron are compared to evaluate derived neutron flux and production yield. First, nano-sized 186W and 89Y specimens are suspended in water in a quartz vial by FLUKA simulation. Then, the solution is irradiated for 4 days under 9E+14 n/cm2/s neutron flux of reactor. Also, a neutron activator including three layers-lead moderator, graphite reflector, and polyethylene absorbent- is simulated and tungsten target is irradiated by 60 MeV protons of cyclotron to generate induced neutrons for 188W and 90Sr production via neutron capture. As the neutron energy reduced, the flux gradually increased towards epithermal range to satisfy (n/2n,γ) reactions. The obtained specific activities at saturation were higher than the reported experimental values because the accumulated epithermal flux and nano-sized specimens influence the outcomes. The beta emitters, which are widely utilized in brachytherapy, appeal an alternative route to locally achieve a rational yield. Therefore, the proposed method via neutron activator may ascertain these broad requirements.