• 제목/요약/키워드: Rg1

검색결과 949건 처리시간 0.025초

염산/에탄올로 유도된 급성 위염 동물모델에서 증숙시간에 따른 홍삼의 보호 효과 (Protective effects of red ginseng according to steaming time on HCl/ethanol-induced acute gastritis)

  • 이주영;권오준;노정숙;노성수
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.365-372
    • /
    • 2016
  • 본 연구에서는 150 mM HCl/60 % ethanol로 급성 위염을 유발한 마우스에서 증숙 시간에 따른 홍삼의 위염 보효 효과에 대해 살펴보고자 하였다. 백삼과 홍삼의 증숙 시간에 따른 성분을 분석한 결과 사포닌, total polyphenol과 total flavonoid의 총 함량이 증숙 시간에 따라 증가하였고 6시간 증숙한 홍삼에서 가장 높은 함량을 보였다. 또한 1,1-diphenyl-2-picrylhydrazyl와 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid radical 소거능 실험을 통해 항산화 활성을 측정한 결과 RG 6에서 가장 높은 활성을 나타냈다. In vitro 실험 결과를 바탕으로 시료를 선택하였고 in vivo 실험을 진행하였다. 급성 위염 마우스 모델에 백삼과 6시간 증숙한 홍삼을 투여하였을 때, RG 6에서 위 점막 손상의 개선을 육안적으로 확인할 수 있었으며, 혈액에서 측정한 ROS 수치도 대조군에 비해 유의적인 감소를 보였다. 또한 염증성 사이토카인을 확인한 결과 대조군에 비해 RG6에서 감소하는 경향을 보였다. 이러한 결과들을 종합해 볼 때 증숙 시간에 따른 홍삼은 급성 위염 유발 마우스 모델에서 위염 보호 효과가 있는 것으로 사료된다.

Effects of processing method on the pharmacokinetics and tissue distribution of orally administered ginseng

  • Chen, Jianbo;Li, Meijia;Chen, Lixue;Wang, Yufang;Li, Shanshan;Zhang, Yuwei;Zhang, Lei;Song, Mingjie;Liu, Chang;Hua, Mei;Sun, Yinshi
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.27-34
    • /
    • 2018
  • Background: The use of different methods for the processing of ginseng can result in alterations in its medicinal properties and efficacy. White ginseng (WG), frozen ginseng (FG), and red ginseng (RG) are produced using different methods. WG, FG, and RG possess different pharmacological properties. Methods: WG, FG, and RG extracts and pure ginsenosides were administered to rats to study the pharmacokinetics and tissue distribution characteristics of the following ginsenosides-DRg1, Re, Rb1, and Rd. The concentrations of the ginsenosides in the plasma and tissues were determined using UPLC-MS/MS. Results: The rate and extent of absorption of Rg1, Re, Rb1, and Rd appeared to be affected by the different methods used in processing the ginseng samples. The areas under the plasma drug concentration-time curves (AUCs) of Rg1, Re, Rb1, and Rd were significantly higher than those of the pure ginsenosides. In addition, the AUCs of Rg1, Re, Rb1, and Rd were different for WG, FG, and RG. The amounts of Rg1, Re, Rd, and Rb1 were significantly (p < 0.05) higher in the tissues than those of the pure ginsenosides. The amounts of Re, Rb1, and Rd from the RG extract were significantly higher than those from the WG and FG extracts in the heart, lungs, and kidneys of the rats. Conclusion: Our results show that the use of different methods to process ginseng might affect the pharmacokinetics and oral bioavailability of ginseng as well as the tissue concentrations of Rg1, Re, Rd, and Rb1.

Characterizing a Full Spectrum of Physico-Chemical Properties of Ginsenosides Rb1 and Rg1 to Be Proposed as Standard Reference Materials

  • Kim, Il-Woung;Hong, Hee-Do;Choi, Sang-Yoon;Hwang, Da-Hye;Her, Youl;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.487-496
    • /
    • 2011
  • Good manufacturing practice (GMP)-based quality control is an integral component of the common technical document, a formal documentation process for applying a marketing authorization holder to those countries where ginseng is classified as a medicine. In addition, authentication of the physico-chemical properties of ginsenoside reference materials, and qualitative and quantitative batch analytical data based on validated analytical procedures are prerequisites for certifying GMP. Therefore, the aim of this study was to propose an authentication process for isolated ginsenosides $Rb_1$ and $Rg_1$ as reference materials (RM) and for these compounds to be designated as RMs for ginseng preparations throughout the world. Ginsenoside $Rb_1$ and $Rg_1$ were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of the isolated ginsenosides was made according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantitation, and mass balance tests. The isolated ginsenosides were proven to be a single compound when analyzed by three different HPLC systems. Also, the water content was found to be 0.940% for $Rb_1$ and 0.485% for $Rg_1$, meaning that the net mass balance for ginsenoside $Rb_1$ and $Rg_1$ were 99.060% and 99.515%, respectively. From these results, we could assess and propose a full spectrum of physicochemical properties for the ginsenosides $Rb_1$ and $Rg_1$ as standard reference materials for GMP-based quality control.

Cardioprotective Effect of the Mixture of Ginsenoside Rg3 and CK on Contractile Dysfunction of Ischemic Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.23-33
    • /
    • 2007
  • Ginsenosides are one of the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in korea. The anti-ischemic effects of the mixture of ginsenoside $Rg_3$, and CK on ischemia-induced isolated rat heart were investigated through analyses of changes in hemodynamics ; blood pressure, aortic flow, coronary flow, and cardiac output. The subjects in this study were divided into four groups: normal control, the mixture of ginsenoside $Rg_3$ and CK, an ischemia-induced group without any treatment, and an ischemia-induced group treated with the mixture of ginsenoside $Rg_3$ and CK. There were no significant differences in perfusion pressure, aortic flow, coronary flow and cardiac output between them before ischemia was induced. The supply of oxygen and buffer was stopped for five minutes to induce ischemia in isolated rat hearts, and the mixture of ginsenoside $Rg_3$ and CK was administered during ischemia induction. Treatments of the mixture of ginsenoside $Rg_3$ and CK significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, hemodynamics (except heart rate) of the group treated with the mixture of ginsenoside $Rg_3$ and CK significantly recovered 60 minutes after reperfusion compared to the control group (mixture+ischemia vs ischemia - average perfusion pressure: 74.4${\pm}$2.97% vs. 85.1${\pm}$3.01%, average aortic flow volume: 49.11${\pm}$2.72% vs. 59.97${\pm}$2.93%, average coronary flow volume: 58.50${\pm}$2.81% vs. 72.72${\pm}$2.99%, and average cardiac output: 52.47${\pm}$2.78% vs. 63.11${\pm}$2.76%, p<0.01, respectively). These results suggest that treatment of the mixture of ginsenoside $Rg_3$ and CK has distinct anti-ischemic effects in ex vivo model of ischemia-induced rat heart.

Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan

  • Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.236-245
    • /
    • 2021
  • Background: Red ginseng (RG) extract, especially ginsenoside Rg1 and Rb1 fractions has been reported to have antithrombotic activities. However, gastric instability and low intestinal permeability are considered to be obstacles to its oral administration. We hypothesized that stability, permeability, and activities of RG might be improved by encapsulation within nanoparticles (NPs) prepared with antithrombotic coating materials. Methods: RG-loaded chitosan (CS) NPs (PF-NPs) were prepared by complex ionic gelation with the antithrombotic wall materials, polyglutamic acid (PGA), and fucoidan (Fu). The concentrations of PGA (mg/mL, X1) and Fu (mg/mL, X2) were optimized for the smallest particle size by response surface methodology. Antithrombotic activities of RG and PF-NPs were analyzed using ex vivo and in vivo antiplatelet activities, in vivo carrageenan-induced mouse tail, and arteriovenous shunt rat thrombosis models. Results: In accordance with a quadratic regression model, the smallest PF-NPs (286 ± 36.6 nm) were fabricated at 0.628 mg/mL PGA and 0.081 mg/mL Fu. The inhibitory activities of RG on ex vivo and in vivo platelet aggregation and thrombosis in in vivo arteriovenous shunt significantly (p < 0.05) increased to approximately 66.82%, 35.42%, and 38.95%, respectively, by encapsulation within PF-NPs. For an in vivo carrageenan-induced mouse tail thrombosis model, though RG had a weaker inhibitory effect, PF-NPs reduced thrombus significantly due to the presence of PGA and Fu. Conclusion: PF-NPs contributed to improve the activities of RG not only by nanoencapsulation but also by antithrombotic coating materials. Therefore, PG-NPs can be suggested as an efficient delivery system for oral administration of RG.

Effect of Ginseng Saponin on Hypothalamus-Pituitary- Adrenal Axis under Stress in Mice

  • Do Hoon Kim;Jun
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.83-89
    • /
    • 1998
  • Ginseng total saponins (GTS) injected intracerebroventricularly (i.c.v.) at doses from 0.1-1 vs inhibited the i.c.v. injection stress-induced plasma corticosterone levels in mice. The inhibitory action of GTS was blocked by co-administered NG-nitro-L-arginine methyl ester (L-NAME; 1.5 us, i.c.v.), an. inhibitor of nitric oxide synthase (NOS). Of the ginsenosides Rbl, Rba, Rc, Rd, Re, Rf, Rgl,20(S)-Rg3, and 20(R)-Rg3 injected i.c.v. at doses from 0.01 to 0.3ug(or 1 uE),20(5)-Rg3 and Rc significantly inhibited the o.c.v. injection stress-induced Plasma corticosterone levels. The inhibitory actions of 20(S)-Rg3 and Rc were blocked by co-administered L-NAME (1.5 n, i.c.v.). These results suggest that G75, 20(S)-Rg3 and Rc may inhibit the i.c.v. injection stress-induced hypothalamo-pituitary-adrenal response by inducing NO production in the brain.

  • PDF

Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels

  • You, Long;Cha, Seunghwa;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.711-721
    • /
    • 2022
  • The immune system is one of the most important parts of the human body and immunomodulation is the major function of the immune system. In response to outside pathogens or high inflammation, the immune system is stimulated or suppressed. Thus, identifying effective and potent immunostimulants or immunosuppressants is critical. Ginsenosides are a type of steroid saponin derived from ginseng. Most are harmless to the body and even have tonic effects. In this review, we mainly focus on the immunostimulatory and immunosuppressive roles of two types ginsenosides: the protopanaxadiol (PPD)-type and protopanaxatriol (PPT)-type. PPT-type ginsenosides include Rg1, Rg2, Rh4, Re and notoginsenoside R1, and PPD-type ginsenosides include Rg3, Rh2, Rb1, Rb2, Rc, Rd, compound K (CK) and PPD, which activate the immune responses. In addition, Rg1 and Rg6 belong to PPT-type ginsenosides and together with Rg3, Rb1, Rd, CK show immunosuppressive properties. Current explorations of ginsenosides in immunological areas are in the preliminary stages. Therefore, this review may provide some novel ideas to researchers who study the immunoregulatory roles of ginsenosides.

A New Processed Ginseng with Fortified Activity

  • Park, Jeong-Hill;Kim, Jong-Moon;Han, Sang-Beom;Kim, Na-Young;Surh, Young-Joon;Lee, Seung-Ki;Kim, Nak-Doo;Park, Man-Ki
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.146-159
    • /
    • 1998
  • A new processed ginseng with fortified activity is developed. The process comprise with the heat treatment of fresh or white ginseng at higher temperature and pressure than those used for the preparation of red ginseng. This new processed ginseng showed 7 times higher antioxidant activity and more than 30 times stronger vasodilating activity than those shown in raw ginseng. Other activities found in the new processed ginseng include cancer chemoprevention, antinephrotoxic, and antineurotoxic activities. Less polar ginsenosides isolated from processed ginseng exhibited anti-platelet aggregation activity and anti-cancer activity. Many ginsenosides were isolated from this new processed ginseng, namely 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rg_5$, $Rg_6$, $F_4$, $Rh_4$,20(S)-$Rg_3$,20(R)-$Rg_3$ and $Rg_4$. In addition to these known compounds, seven new ginsenosides, named as gisenoside $Rk_1$, $Rk_2$, $Rk_3$, $Rs_4$, $Rs_5$, $Rs_6$, and $Rs_7$ were isolated. The major constituents of new processed ginseng were 20(S)-$Rg_3$,20(R)-$Rg_3$, $Rk_1$ and $Rg_5$ which are minors in red ginseng. Since the chemical constituents and biological activities of this new processed ginseng are quite different from those of white or red ginseng, we designated it as $'$sun ginseng (仙蔘)$'$.s;$.

  • PDF

Effects of Ginsenosides on Glucose Uptake and Insulin Secretion

  • ;;;정성현
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2007년도 춘계 학술대회
    • /
    • pp.23-24
    • /
    • 2007
  • Purpose: 인삼이 항당뇨 활성을 가진다는 연구가 많은 연구자들에 의해 진행되었고, 이는 인삼의 구성 성분 중 ginsenoside에 기인한다는 보고가 있다. 본 연구는 ginsenoside의 항당뇨 작용기전을 in vitro에서 알아보고자 3T3-L1 지방세포에서 glucose uptake와 췌장 베타세포인 HIT-T15 세포에서 insulin 분비 효과를 확인하였다. 이를 위하여 인삼을 식초로 처리한 긴삼의 70% MeOH 분획으로부터 protopanaxadiol 계인 ginsenoside $Rb_2$, $Rg_3$ 그리고 protopanaxtriol 계인 $Rg_2$를 분리하여 본 실험에 사용하였다. Method: Ginsenoside $Rb_2$, $Rg_2$, $Rg_3$가 지방 세포에서 glucose uptake에 미치는 효과를 확인하기 위하여 3T3-L1 세포를 DMEM (Dulbecco's Modified Eagle's Medium) 배지에서 분화 유도시켰으며 3T3-L1 preadipocyte가 80% 정도 자라면 분화 유도 배지 (5% fetal bovine serum (FBS), 0.5 mM isobutylmethylxanthine (IBMX), 1 mM dexamethasone 그리고 $10{\mu}g/ml$ insulin가 포함된 DMEM)로 4일, $10{\mu}g/ml$ insulin가 포함된 DMEM으로 2일, FBS만 포함된 DMEM으로 2일 배양하여 총 8일 동안 분화를 유도하였다. 분화 유도된 3T3-L1 adipocytes 에 각각 $Rb_2$, $Rg_2$, $Rg_3$$20{\mu}M$로 처리하여 16시간 배양하여 low glucose DMEM에서 3시간 배양한 후에 $37^{\circ}C$에서 insulin 10 ng/ml 과 각각 $Rb_2$, $Rg_2$, $Rg_3$가 포함된 Krebs Ringer Hepes buffer(KRP buffer)에서 20분간 배양하였다. 2-deoxy-D-[$^3H$]-glucose를 넣고 10분 후에 차가운 PBS로 반응을 종결시켜 lysis buffer로 cell을 모은 후 scintillation counter를 이용하여 glucose를 측정하였다. Insulin 분비 효과는 HIT-T15 세포와 일차 배양한 흰쥐 소도세포(islets)를 사용하여 확인하였다. HIT-T15 세포는 24 well plate에 well 당 $2{\times}10^5$ 개씩 분주하여 24시간 동안 배양한 후 시료를 처리하였으며 소도 세포는 Sprague-Dawley rat의 췌장에 collagenase가 포함된 Hanks' Balanced Salt Solution(HBSS)을 주입하여 분리하고 islets을 얻었다. 분리한 소도세포를 $1{\sim}2$일 동안 배양하여 $Rb_2$, $Rg_2$, $Rg_3$가 각각 $20{\mu}M$의 농도로 첨가된 insulin 측정용 buffer인 Krebs-Ringer buffer (KRB+0.3% BSA, KRBB)에 $37^{\circ}C$에서 1시간 incubation 시킨 후 배양액으로 분비된 인슐린의 양을 측정하였다. 한편 ginsenoside의 인슐린 분비 촉진 기전을 알아보기 위한 실험에서는 ATP-sensitive $K^+$ channel opener인 diazoxide (0.5 mM)가 ginsenoside에 의해 촉진된 인슐린 분비를 억제하는지 살펴보았다. Result: glucose uptake assay 에서는 $Rg_2$가 가장 크게 glucose uptake를 증가시켰고 $Rb_2$, $Rg_3$는 그 활성이 크지 않았다. 한편 Insulin 분비 효과는 diol계인 $Rg_3$에서 용량 의존적으로 인슐린의 분비를 촉진시켰으며 $20{\mu}M$ 농도에서 대조군과 비교해 1.5배 이상의 분비 촉진 효과를 보였고 triol계인 $Rg_2$ 에서는 이러한 효과가 나타나지 않았다. $Rg_3$의 인슐린 분비 촉진 기전을 0.5 mM 의 diazoxide를 이용하여 확인한 결과 $Rg_3$에 의해 촉진된 인슐린 분비를 감소시켰다. 이로 미루어보아 $Rg_3$의 인슐린 분비 촉진 기전은 ATP-sensitive $K^+$ 채널의 봉쇄에 의한 것임을 확인할 수 있었다.

  • PDF