ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.
다양한 함량으로 네오디뮴이 도핑된 황화아연 박막제작은 RF 마그네트론 스퍼터링 장비를 이용하여 황화아연과 네오디뮴을 동시 증착하여 박막을 제작하였고, 후처리 공정으로 급속열처리를 400℃ 에서 30분간 실시하였다. 다양한 네오디뮴의 도핑 함량(0.35at.%, 1.31at.%, 1.82at.% 및 1.90at.%)을 갖는 ZnS 박막의 구조, 형태, 광학적 특성을 연구하였다. X-선 회절 패턴은 모든 박막에서 (111)방향의 큐빅 구조로 성장하였다. SEM 이미지와 AFM 이미지를 통해 네오디뮴 도핑 함량에 의한 박막의 표면 및 구조적 형태에 대하여 설명하였다. EDAX를 통해 다른 불순물이 포함되지 않은 Zn, S 및 Nd의 원소만을 확인하였다. UV-vis 스펙트럼을 이용하여 제작된 박막의 투과율과 밴드갭을 확인하였다.
한국 전체 에너지 사용량 중약 24%의 에너지가 건축물 부분에 소비되고 있다. 건축물의 벽체나 유리창 등을 통해서 에너지 손실이 이루어지는데 유리창은 벽체에 비해 약 10배 이상 낮은 단열 특성을 가지고 있기 때문에 유리창을 통한 열손실량은 더 크다. 이러한 유리창 부분의 열손실 문제를 해결할 수 있는 방안으로 좋은 단열 특성 및 낮은 방사율을 가지고 있는 Low-e coating 방법을 사용하였다. 본 실험에서는 XG glass 기판 위에 IGZO/Ag/IGZO OMO 구조의 다층 박막을 증착하였다. RF magnetron sputtering방법을 이용하여 OMO 구조의 상부와 하부의 Oxide layer로 IGZO 박막을 증착하였다. 사용된 IGZO 타겟은 $In_2O_3$ (99.99%), $Ga_2O_3$ (99.99%), ZnO (99.99%)의 분말을 각각 1:1:1 mol% 조성비로 혼합하여 소결하여 제작하였다. Thermal Evaporator 장비를 이용하여 OMO 구조의 Metal layer로 Ag (99.999%)를 증착하였다. 실험 기판은 크기 $30{\times}30mm$의 0.7T XG glass를 사용하였다. OMO 구조의 산화층 IGZO 박막은 상/하층 동일 조건으로 기판 온도는 실온으로 고정하였으며, 초기 압력 $3.0{\times}10^{-6}$ Torr, 증착 압력 $3.0{\times}10^{-2}$ Torr, RF 파워 50W, Ar 유량 50 sccm로 고정시키고 증착 시간이 변화하면서 박막을 증착하였다. OMO 구조의 Metal layer로 Ag 증착 조건은 초기 진공도가 약 $6.0{\times}10^{-6}$ Torr 이하로 유지하고 기판을 2 Rpm의 속도로 회전시켰다. 이후 0.3 V로 Ag를 10분간 가열하여 충분히 녹인 후 Film Thickness Monitor로 두께를 확인하였다. OMO 다층 박막의 산화물층 변화에 따라 로이다층 박막의 구조적, 광학적 및 전기적 특성을 분석하였다. XRD 분석결과에 의하여 Bragg's 법칙을 만족하는 피크가 나타나지 않는 비정질 구조임을 확인할 수 있으며, AFM 분석결과에 통해서 최소 1.3 nm의 Roughness를 나타내었다. UV-Visible-NIR 분광광도계를 이용하여 다층 박막은 가시광선 영역에서 평균 80%의 광 투과성을 보여 IR 영역에서 평균 30% 투과하고 좋은 차단 특성을 나왔다. Low-e 특성을 갖는 유리창을 통해서 에너지 절약을 이룰 수 있는 것을 확인할 수 있었다.
Kim, H.H.;Kim, S.;Shin, S.H.;Park, J.I.;Park, K.J.
한국표면공학회지
/
제29권6호
/
pp.829-833
/
1996
Superconducting YBaCuO thin films were deposited on MgO (100) single crystal substrate by rf reactive sputtering method. Sputtering target was prepared by mixing the original powders of $Y_2O_3$, $BaCO_3$, and CuO at $830^{\circ}C$, and its composition was $YBa_2Cu_{3.3}O_x$ adding the excess CuO to compensate for the loss of Cu in the deposition process. The sputtering conditions for a high quality of YBCO thin film were: substrate temperature of 13$0^{\circ}C$; gas pressure of 10 mTorr; gas mixture ($O_2$: Ar =10: 90); distance of 2.5 inch; and rf power density of 4.87 W /$\textrm{cm}^2$. The deposition rate was 2.4~2.6 nm/min. From the RBS results, it was found that Cu and Ba contents in thin films decreased with the increase of substrate temperature. The increase of gas pressure resulted in significant deficiency of Ba elements.
Al doped ZnO thin films have been deposited by a RF magnetron sputtering technique from a ZnO (2 wt.% $Al_2O_3$) target onto glass substrates heated at temperature ranging from RT to $400^{\circ}C$. X-ray diffraction analysis shows that the deposits have a preferential growth along the c-axis of a hexagonal structure. The full with at half maximum decreases from 0.45 to $0.43^{\circ}$ in the studied temperature range. The root main square surface roughness increases with substrate temperature from 1.89 to 2.67 nm. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is red-shifted with substrate temperature from RT to $400^{\circ}C$. The sheet resistance increases from 92 ohm/sq to 419 ohm/sq when the deposition temperature increases from RT to $400^{\circ}C$. The increment of sheet resistance is caused by lowered carrier concentration resulting from an increase in surface roughness.
AIN thin film has been deposited on the $AI_2$$O_3$substrate with reactive radio frequency( RF) magnetron sputtering method. In this work, elelctromechanical coupling coefficient of AIN thin film was increased with an increase of AIN thin film thickness, and the maximum value was 0.11%. Insertion loss of SAW device was decreased with an increase of AIN thin film thickness and the minimum value was 33[㏈]. SAW velocity of IDTs/AIN/$AI_2$$O_3$structure and IDTs/AIN/$AI_2$$O_3$/Si structure were about 5480[㎧]and 5040[㎧]respectively.
Insoluble catalytic electrodes were fabricated by RF magnetron sputtering of Pt on Ti substrates and the performance of seawater electrolysis was compared in these electrodes to that is DSA electrodes. The Pt-sputtered insoluble catalytic electrodes were nearly 150 nm-thick with a roughness of $0.18{\mu}m$, which is 1/660 and 1/12 of these values for the DSA (dimensionally stable anodes) electrodes. The seawater electrolysis performance levels were determined through measurements of the NaOCl concentration, which was the main reaction product after electrolysis using artificial seawater. The NaOCl concentration after 2 h of electrolysis with artificial seawater, which has 3.5% NaCl normally, at current densities of 50, 80 and 140 mA/$cm^2$ were 0.76%, 1.06%, and 2.03%, respectively. A higher current density applied through the electrodes led to higher electrolysis efficiency. The efficiency reached nearly 58% in the Pt-sputtered samples after 2 h of electrolysis. The reaction efficiency of DSA showed higher values than that of the Pt-sputtered insoluble catalytic electrodes. One plausible reason for this is the higher specific surface area of the DSA electrodes; the surface cracks of the DSAs resulted in a higher specific surface area and higher reaction sites. Upon the electrolysis process, some Mg- and Ca-hydroxides, which were minor components in the artificial seawater, were deposited onto the surface of the electrodes, resulting in an increase in the electrical resistances of the electrodes. However, the extent of the increase ranged from 4% to 7% within an electrolysis time of 720 h.
ZnO 박막을 RF sputtering 법을 이용하여 제작한 후, 기판 온도에 따른 결정성, 표면 형상, c 축 배향성, 박막의 밀도 등을 조사하여 압전 소자로의 적용 가능성을 조사하였다. 본 연구에서는 $Ar/O_2$ 혼합비 70/30, sputtering 파워 125 W, 공정 압력 8 mTorr, 기판 타겟간 거리 70 mm로 공정 변수를 고정시키고, 기판 온도를 상온에서 $400^{\circ}C$까지 변경하면서 ZnO 박막을 증착하였다. 기판온도가 $300^{\circ}C$ 일 때, (002) 피크의 상대 강도비 (I(002)/I(100))가 94%로 가장 크게 나타났으며, 이 때의 반가폭은 $0.571^{\circ}$ 이었다. SEM과 AFM을 통한 표면 형상은 $300^{\circ}C$ 일 때 균일한 입자형태를 띄면서 4.08 nm의 가장 우수한 표면 거칠기를 나타내었다. ZnO 박막의 밀도는 기판 온도가 상온에서부터 $300^{\circ}C$ 까지 상승함에 따라 증가하는 추세를 나타내었으며, 이 후 기판 온도가 $400^{\circ}C$로 증가하면 다시 감소하는 경향을 나타내었다.
ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.
ZnO-$SnO_2$ films were deposited by rf magnetron sputtering using a ZnO-$SnO_2$ (2:1 molar ratio) target. The target was made from a mixture of ZnO and $SnO_2$ powders calcined at $800^{\circ}C$. The working pressure was 1 mTorr, and the rf power was 120 W. The ratio of oxygen to argon ($O_2$:Ar) was varied from 0% to 10%, and the substrate temperature was varied from $27^{\circ}C$ to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force spectroscopy (AFM). The ZnO-$SnO_2$ films deposited in $O_2$:Ar = 10% exhibited resistivity higher than $10^6{\Omega}cm$ and transmittance of more than 80% in the visible range.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.