• 제목/요약/키워드: Reynolds-averaged Navier-Stokes equations

검색결과 326건 처리시간 0.023초

임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감 (Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller)

  • 김건우;유서윤;정철웅;서성진;장철민;설한신
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.524-532
    • /
    • 2020
  • 본 논문에서는 무선진공청소기용 팬 모터 단품으로부터 방사되는 공력소음을 저감하기 위하여 팬 모터 단품 내부의 기존 임펠라에 스플리터 날개를 설계하였다. 우선, 팬 모터 단품, 특히 임펠라의 유동장을 분석하기 위하여 전산유체역학 기법을 사용하여 비정상, 비압축성 Reynolds-Averaged Navier-Stokes(RANS) 방정식을 수치적으로 해석하였다. 예측한 유동장 결과를 입력값으로 Ffowcs Williams-Hawkings(FW-H) 적분 방정식을 풀어 임펠라로부터 방사되는 소음을 수치적으로 예측하였다. 예측한 음압스펙트럼과 측정값의 비교를 통하여 수치해석방법의 유효성을 검증하였다. 예측한 유동장 결과에 대한 추가 분석을 통하여 임펠라 날개 사이에서 강한 와류가 형성되는 것을 확인하였다. 와류는 유동에는 손실로 소음에는 소음원으로 작용하기 때문에 기존 임펠라에 스플리터 형상을 추가 설계하여 와류를 억제하고자 하였다. 스플리터의 길이와 위치를 설계 인자로 선정하였으며, 다구찌 기법을 사용하여 각각의 설계 인자가 공력소음에 미치는 영향도를 살펴보았다. 이 결과로부터 최소소음을 나타내는 스플리터의 최적 위치와 길이를 결정하였다. 최종 선정된 설계안에 대한 추가 해석을 통하여 소음성능이 개선됨을 확인 하였다.

파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구 (Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis)

  • 구가람;이송준;김극수;정철웅
    • 한국음향학회지
    • /
    • 제36권5호
    • /
    • pp.314-320
    • /
    • 2017
  • 일반적으로 감압밸브는 고압 가스에 의한 배관 파손을 방지하기 위해 설치된다. 그러나 감압 밸브를 지나면서 발생하는 급격한 압력 저하는 음향파의 형태로 전파되는 큰 음향 에너지를 발생 시키며, 하류 방향으로 전파되면서 배관의 벽면을 진동시키는 가진원으로 작용하여 배관의 파손을 유발한다. 따라서, 본 연구에서는 단순 수축-확장 배관을 대상으로 LES(Large-Eddy Simulation)기법과 파수-주파수 분석을 통해 유동장 내 비압축성 압력섭동과 압축성 압력 섭동을 분리하고, 밸브 유동에 의한 내부 유동소음을 예측하였다. 수치해석의 수렴성을 향상시키기 위해 먼저 정상상태 Reynolds-Averaged Navier-Stokes 방정식을 해석하여, 고정확도의 비정상 LES해석의 초기 값으로 활용하였으며, 비정상 유동장 결과로부터 파수-주파수 분석을 실시하였다. 파수-주파수 분석을 통해 비압축성 압력섭동과 압축성 압력섭동을 분리하였으며, 이를 통해 배관 내 음향유기진동에 의한 소음원 정보를 정확히 제공할 수 있음을 확인하였다.

무선진공청소기 팬 모터 단품의 유량성능 향상과 공력소음 저감을 위한 임펠라 최적설계 (Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise)

  • 김건우;유서윤;정철웅;서성진;장철민
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.379-389
    • /
    • 2020
  • 본 논문에서는 무선진공청소기용 팬 모터 단품의 유량 및 소음성능을 향상시키기 위하여 무선청소기 유로를 통하여 공기를 흡입하는 임펠라에 대한 최적설계를 수행하였다. 우선, 팬 모터 단품, 특히 임펠라의 유동장을 분석하기 위하여 비정상, 비압축성 Reynolds averaged Navier-Stokes(RANS) 방정식을 전산유체역학(Computational Fluid Dynamics, CFD)에 기초하여 해석하였다. 예측한 유동장 정보를 입력값으로 Ffowcs-Williams and Hawkings(FW-H) 방정식을 사용하여 임펠라로부터 방사되는 소음을 수치적으로 예측하였다. 유량과 소음에 대한 수치해석 결과를 실험을 통해 측정한 팬 모터 단품의 P-Q 곡선과 음압 스펙트럼과 비교하여 사용한 수치방법의 유효성을 확인하였다. 수치해석결과로부터 임펠라 날개의 코드방향 중간부분의 급격한 곡률 변화로 인하여 강한 와류가 형성되는 것을 확인하였다. 와류는 유동에는 손실로 소음에는 소음원으로 작용하기 때문에 기존의 임펠라를 재설계하여 와류를 개선하고자 하였다. 2인자 반응표면방법을 사용하여 최대유량과 최소소음을 나타내는 입·출구 뒷젖힘각(sweep angle)을 결정하였다. 최종 선정된 설계안에 대한 추가 해석을 통하여 유량성능과 소음성능이 개선됨을 확인하였다.

수평축 조류발전 터빈의 노즈 형상 및 유입각도, 타워 구조물의 영향을 고려한 터빈 성능특성 분석 (A Study on Performance Characteristics of Horizontal Axis Tidal Turbine Considering Nose Shape, Angle of Inflow and Tower Structure)

  • 허만웅;김동환;이진학
    • 한국해안·해양공학회논문집
    • /
    • 제32권1호
    • /
    • pp.17-25
    • /
    • 2020
  • 본 연구에서는 1 MW급 수평축 조류발전기의 출력 및 유동특성을 분석하기 위해 3차원 레이놀즈 평균 나비어-스톡스 해석을 수행하였다. 난류해석을 위해 SST(shear stress transport) 난류모델을 사용하였고, 유동해석을 위한 계산영역은 육면체격자로 구성하였으며, 최적의 격자 크기를 결정하기 위하여 격자 의존성 시험을 수행하였다. 터빈의 노즈 형상 및 유입각도, 그리고 타워 구조물의 영향을 분석하였다. 노즈 형상의 경우 노즈의 직경 대비 축방향 길이의 비가 증가할수록 터빈 출력이 향상되는 결과를 확인할 수 있었고, 유입각도가 약 15° 이상에서는 터빈의 성능이 약 10% 이상 감소하는 것을 확인하였다. 또한 타워 구조물에 의하여 하류식 터빈의 경우 상류식 터빈에 비하여 성능이 1% 감소함을 알 수 있었다.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.371-385
    • /
    • 2020
  • A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.

OWC 파력발전장치의 공기실 성능예측에 대한 수치적인 연구 (Numerical Prediction of Chamber Performance for OWC Wave Energy Converter)

  • 김길원;현범수;류진;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권2호
    • /
    • pp.91-98
    • /
    • 2010
  • 진동수주형 파력발전장치에서 공기실 내의 수면 변화와 덕트 내 유량의 왕복유동은 시스템의 작동 성능을 결정짓는 매우 중요한 요소이다. 공기실 내의 수면 변화를 고찰하기 위하여 상용 CFD 코드인 Fluent 6.2를 이용하여 구현한 수치조파수조를 사용하였다. 수치조파수조의 지배방정식은 연속방정식과 Reynolds 평균 N-S 방정식이고 자유수면은 Two-phase VOF 기법을 이용하여 추적하였다. 공기실 내의 수면 변화와 공기실 윗부분에 설치된 덕트 내의 왕복유량을 계산하여 고찰하였고, 계산의 정확도를 검증하기 위하여 실험결과와 비교 분석을 수행하였다. 또한 동일한 입사파 조건에서 공기실 - 덕트 시스템의 노즐 비율이 시스템이 미치는 영향을 고찰하여 분석을 하였다.

층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션 (CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model)

  • 김동현;전규목;박종천;신명수
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

해안림에 의한 풍속저감 효과의 수치적 모의 (Numerical Simulation of the Wind Speed Reduction by Coastal Forest Belts)

  • 임상준;이상호;김동엽;홍영주
    • 한국환경복원기술학회지
    • /
    • 제12권3호
    • /
    • pp.98-105
    • /
    • 2009
  • The objective of this study is to develop numerical simulation model for analysing the wind speed reduction effect by coastal forest belts. The horizontally homogeneous turbulent flow equations, which are derived from the Reynolds-averaged Navier-Stokes method, both above the tree canopy and within the canopy were first formulated, and a first-order closure scheme with the capability of accounting the bulk momentum transport term within the canopy was employed. The averaged equations were solved numerically by finite difference method, FTCS (forward time centered space) scheme. The proposed model was also used to numerically investigate the effects of structural characteristic of forest belt on the wind speed. The effects of maximum leaf area density were evaluated, with the leaf area density of $1.0m^2/m^3$, $2.0m^2/m^3$, $3.0m^2/m^3$, and $4.0m^2/m^3$. Vertical distributions of leaf area, both uniform and varied distribution with a height, were also considered. A comparison of wind profile indicated that there was in good agreements between simulated and measured wind speed. Also, the results showed horizontal wind speed decreased under a height of the tree with increasing maximum leaf area density. In conclusion, in applications where computational efficiency and simplicity are desirable, the proposed numerical model has of great capability to determine the vertical turbulent momentum transport and wind profile in the costal forest belt.

자동차 냉/난방 성능 향상을 위한 공기조화 덕트의 기류해석 (Aerodynamic Analysis of Automotive HVAC Duct for Enhancement of Cooling/Heating Performance)

  • 주재우;이기돈;허만웅;김광용;박준규;윤정환;김홍빈
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.23-28
    • /
    • 2012
  • In the present work, numerical analyses of air flow in HVAC duct have been carried out for enhancement of cooling/heating performance. For the analyses, three-dimensional Reynolds-averaged Navier-Stokes equations have been solved with the shear stress transport turbulence model. The numerical results were validated in comparison with the experimental data. Based on the numerical results, the HVAC duct was designed to reduce the pressure loss. The modified duct geometry shows largely reduced pressure drop in comparison with the reference geometry. And, through modified duct shape, the performance of air conditioning has been enhanced.