• Title/Summary/Keyword: Reynolds stress turbulence model

Search Result 208, Processing Time 0.021 seconds

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Application of the E-$\varepsilon$turbulence numerical model to a flow and dispersion around triangular ridge( I ) (E-$\varepsilon$모델을 이용한 삼각 봉우리 주변의 유동과 확산 수치해석(I))

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.116-123
    • /
    • 1994
  • The E- $\varepsilon$ turbulence numerical model was applied to a flow around triangular ridge in neutral boundary layer. Scale of cavity region, mean velocity, Reynolds stress and eddy diffusivity were investigated. The height of cavity region was in satifactory agreement with the wind tunnel data while the length of cavity region was underestimated. The man wind velocities outside the cavity region were well Predicted by the model, however in cavity region the mean wind velocities of wind tunnel data were larger than the model results Reynolds stress of cavity region was overestimated by the model. The eddy diffusivity of wake region was strongly modified under the influence of triangular ridge. The local minimum of the eddy diffusivity was occured in the lee of the ridge top.

  • PDF

Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model (대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Lee, Deuck-Soo;Boo, Jung-Sook
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.579-584
    • /
    • 2000
  • Algebraic Reynolds Stress (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the model's predictability. The applied numerical schemes are upwind scheme and skew-upwind scheme. The numerical results show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show slight deviations in second order (i.e., kinetic energy and turbulence intensity). By comparison with the previous results using $k-{\varepsilon}$ model, ARS model predicts better than the standard $k-{\varepsilon}$ model, however, predicts slightly worse than the $k-{\varepsilon}$ model including the streamline curvature modification. Additionally this study can reconfirm that skew-upwind scheme has approximately 25% improved predictability than upwind scheme.

  • PDF

EVALUATION OF TURBULENCE MODELS IN A HIGH PRESSURE TURBINE CASCADE SIMULATION (고압터빈 익렬 주위 유동해석에서 난류모델의 영향 평가)

  • El-Gendi, M.M.;Lee, K.U.;Chung, W.J.;Joh, C.Y.;Son, C.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • Steady flow simulations through a high pressure turbine guide vanes were carried out. The main objective of the present work is to study the performance of turbulence models on the steady flow prediction from aerodynamic and aerothermal points of view. Three turbulence models were compared, namely SST, k-${\omega}$ and ${\omega}$-Reynolds stress models. The laminar results were also compared. The comparison was done with emphasis on the isentropic Mach number and heat transfer coefficient along the blade, and total pressure loss in the wake region. The calculated isentropic Mach number showed reasonable agreement with experimental data along the blade surface for all three turbulent models. For the total pressure loss in the wake region, ${\omega}$-Reynolds stress model showed the best agreement with the experimental data. However, unless using an appropriate transition model, the heat transfer coefficients of all three turbulent models showed poor agreement with experimental data.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Numerical Analysis of Swirling Turbulent Flow in a Pipe (원관내 난류 선회류의 수치해석)

  • Lee, D.W.;Kim, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.396-405
    • /
    • 1995
  • Numerical calculations are carried out for the swirling turbulent flow in a pipe. Calculations are made for the flow with swirl parameter of 2.25 and the Reynolds number of 24,300. The turbulence closure models used in these calculations are two different types of Reynolds stress model, and the results are compared with those of $k-{\varepsilon}$ model and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-pressure correction. The computational results show that GL model gives the results better than those of SSG model in the predictions of velocity and stress components.

  • PDF

Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area (극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발)

  • Lee, Sang Moon;Jang, Choon Man
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

Numerical Analyses on Wall-Attaching Offset Jet with Algebraic Reynolds Stress Model (대수 레이놀즈 응력모델에 의한 단이 진 벽면분류에 대한 수치해석)

  • Seo, Ho-Taek;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1615-1624
    • /
    • 2000
  • Algebraic Reynolds Stree (ARS) model is applied in order to analyze the turbulent flow of wall-attaching offset jet and to evaluate the predictability of model. The applied numerical schemes are the upwind scheme and the skew-upwind scheme. The numerical results show a good prediction in the first order calculations(i.e., reattachment length, mean velocity, pressure), however, slight deviations in the second order(i.e., kinetic energy and turbulence intensity). Comparing with the previous results using the k-$\varepsilon$ model, the ARS model predicts better than the standard k-$\varepsilon$ model, however, slightly worse than the k-$\varepsilon$ model including the streamline curvature modification. Additionallay this study can reconfirm that the skew-upwind scheme has approximately 25% improved predictability than the upwind scheme.