• 제목/요약/키워드: Reynolds shear stresses

검색결과 60건 처리시간 0.027초

난류 이중동심관 유동에 미치는 표면거칠기 효과 (Effect of Surface Roughness on Turbulent Concentric Annular Flows)

  • 김경천;안수환;정양범
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1749-1757
    • /
    • 1995
  • The structure of turbulence of fully developed flow through three concentric annuli with both rough inner and outer walls was investigated experimentally for Reynolds number range Re=15000-93000. Turbulence intensities were measured in three (u, v, w) directions, and turbulence shear stresses in annuli of radius ratios .alpha.= 0.26, 0.4 and 0.56, respectively. The result showed that the structure of turbulence for these asymmetric flows was not the same as that for the annulus with smooth walls. The velocity fluctuations of all three components (u, v, and w-directions) showed little discernible variation with Reynolds numbers, but became apparent with the influence of radius ratio (.alpha.) The experimental results for an annulus with the roughened outer wall and a smooth annulus were shown in the figures as a reference. The eddy diffusivities and friction factors were also presented and discussed.

평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사 (Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation)

  • 홍성호;서정식;신종근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF

점착성 부유사 이동에 관한 수치모형 (A Numerical Model for Cohesive Suspended Load Movement)

  • 안수한;이상화
    • 물과 미래
    • /
    • 제23권1호
    • /
    • pp.119-127
    • /
    • 1990
  • 점착성 부유사 농도분포는 해수유동과 물질 확산에 의해서 결정되며 지배방정식으로는 2차원 수심적분된 Reynolds운동방정식, 연속방정식과 Fick의 확산법칙에 근거를 둔 대류-확산방정식이 사용되었다. 해수유동과 점성퇴적물 확산인 두개의 모형은 유한차분법을 이용하였고 유동모형은 양해법, 확산모형은 다증법을 사용하여 부유사 이동의 현상을 파악하였다. 해수유동방정식의 적용시 이송항의 포함여부에 대해서 조사하였으며 물질확산 방정식에 대해서는 한계전단응력값의 변화가 부유사농도에 영향을 주는가에 대해서 비교하였다.

  • PDF

PIV study of the flow around a 5:1 rectangular cylinder at moderate Reynolds numbers and small incidence angles

  • Guissart, Amandine;Elbaek, Erik;Hussong, Jeanette
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.15-27
    • /
    • 2022
  • This work comes within the framework of the "Benchmark on the Aerodynamics of a Rectangular Cylinder" that investigates a rectangular cylinder of length-to-depth ratio equal to 5. The present study reports and discusses velocity fields acquired using planar Particle Image Velocitmetry for several angles of attack and Reynolds numbers. In particular, for a cylinder depth-based Reynolds number of 2 × 104 and zero incidence angle, the flow features along the lateral (parallel to the freestream) upper and lower surfaces of the cylinder are reported. Using first and second order statistics of the velocity field, the main flow features are discussed, especially the size and location of the time-averaged flow structures and the distribution of the Reynolds stresses. The variation of the flow features with the incidence is also studied considering angles of attack up to 6°. It is shown that the time-averaged flow is fully detached for incidence higher than 2°. For an angle of attack of 0°, the effects of the Reynolds number varying between 5 × 103 and 2 × 104 are investigated looking at flow statistics. It is shown that the time-averaged location of the reattachment point and the shape and position of the time-averaged main vortex are mostly constant with the Reynolds number. However, the size of the inner region located below the time-averaged shear layer and just downstream the leading edge corner appears to be strongly dependent on the Reynolds number.

가스난방기용 스월버너의 3차원 난류유동 특성에 관한 실험적 연구 (An Experimental Study on the Three Dimensional Turbulent Flow Characteristics of Swirl Burner for Gas Furnace)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.225-234
    • /
    • 2001
  • This paper represents the vector fields, three dimensional mean velocities, the turbulent intensities, the turbulent kinetic energy, and the Reynolds shear stresses in the X-Y plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rates 350 and 450ℓ/min respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component exists in the narrow slits situated radially on the edge of gas swirl burner, for that reason, there is some entrainment phenomena of ambient air in the outer region of burner. Moreover, mean velocities in the initial region are largely distributed near the outer region of burner at Y/R≒0.97, but they diffuse and develop into the center flow region of burner according to the increase of axial distance. The turbulent intensities and the turbulent kinetic energy due to large inclination of mean velocity and swirl effect show that the maximum value in the initial region of burner is formed in the narrow slits situated radially on the edge of gas swirl burner and large values are mainly formed in the entire region of burner after X/R=2.4358, hence, the combustion reaction is anticipated to occur actively near this region. And the Reynolds shear stresses are also largely distributed from slite to vanes of gas swirl burner in the intial region, but their values largely disappear after X/R=3.2052.

정상유동에서 유동형 단엽폴리머 인공판막의 수력학적 성능평가 (Hydrodynamic Investigation of a Floating-type Monoleaflet Polymer Valve under Steady Flow Condition)

  • 김준우;박복춘
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.49-60
    • /
    • 1996
  • An experimental investigation was performed under steady flow condition to assess hydrodynamic performance of floating-type monoleaflet polymer valves (MLPV) withdifferent leaflet thickness. The St. Jude Medical valve (SJMV) was also used for comparison test. Pressure drops of MLPVS are larger than those for other types of polymer valves and mechanical valves. Furthermore, the thicker is the leaflet thickness of the polymer valve, the larger are the corresponding pressure drop. The velocity profiles for MLPs reveal a large reversed flow region downward to the valve position. The maximum wall shear stresses of MLPVS at a flow rate of $30{\ell}$/min are in the range 50-130 dyn/$cm^2$, and the corresponding maximum Reynolds shear stresses are in the range of 100-500 dyn/$cm^2$, respectively, which are beyond the allowable limit clinically. In contrast, floating-type monoleaflet polymer valves show better hydrodynamic performance in leakage volume. From the designing point of view, it may be concluded that the optimum thickness of leaflet for better hydrodynamic performance is one of the Important parameters.

  • PDF

정상유동에서 유동형 단엽폴리머 인공심장판막의 수력학적 성능평가 (Hydrodynamic Investigation of a Floating-type Monoleaflet Polymer Heart Valve under Steady Flow Condition)

  • 박복춘;김준우;백병준;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.241-246
    • /
    • 1995
  • An experimental investigation was performed under steady flow condition to assess hydrodynamic performance of floating-type monoleaflet polymer valves (MLPV) with different leaflet thickness. The St. Jude Medical valve (SJMV) was also used for comparison tests. Pressure drops of MLPVs are larger than those for other types of polymer valves and mechanical valves. Furthermore, the thicker is the leaflet thickness of a polymer valve, the larger arc the corresponding press drop. The velocity profiles for MLPV reveal a large reversed flow region downward to the valve position. The maximum wall shear stresses of MLPVs at a flow rate of 30 l/min are in the range $54-130\;dyn/cm^2$, and the corresponding maximum. Reynolds shear stresses are in the range of $100-500\;dyn/cm^2$, respectively. Both arc beyond the allowable limit clinically. In contrast, floating-type monoleaflet polymer valves show better hydrodynamic performance in leakage volume. From the designing point of view, it can be concluded that the optimum thickness of leaflet for better hydrodynamic performance is one of the important parameters.

  • PDF

벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성 (TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE))

  • 장용준;류지민;고한서;박성혁;구동회
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

능동 가진을 이용한 원형 제트에서의 유동 소음 제어 (Control of Flow-Induced Noise from a Round Jet using Active Excitation)

  • 김정우;차성대;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.798-803
    • /
    • 2003
  • The objective of the present study is to investigate the changes in the acoustic source characteristics and far-field noise propagation in an incompressible round jet at Re=10000 for single-frequency excitations using large eddy simulation and Lighthill acoustic analogy. We apply excitations at a frequency corresponding to the jet-column mode ($St_{D}=0.85$) or maximum growth rate in the shear layer ( $St_{\theta}=0.017$ ). The acoustic source derived from the Lighthill acoustic analogy is the second spatial derivative of the Reynolds stresses. In the case of $St_{D}=0.85$, vortex ring and large scale structures are dominant sources, whereas in the case of $St_{\theta}=0.017$, the main sources are located at an upstream position along the shear layer than in the uncontrolled case. Also, the far-field noise propagates along the axial direction due to excitation.

  • PDF

무한 소폭 전기유변 스퀴즈 필름 댐퍼에 관한 이론적 근사해 (Theoretical Approximate Solutions for Electrorheological Short Squeeze Film Dampers)

  • 정시영;최상규;강덕형
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.60-67
    • /
    • 1997
  • ER(electro-rheological) fluids, which are represented as Bingham fluids, have large and reversible changes in yield shear stresses by application of an electric field. In this paper, ER fluids are employed in a short squeeze film damper. The modified Reynolds equation for an ER short squeeze film damper is theoretically solved to get the approximate solutions of pressure profiles and damping coefficients. The theoretical approximate solutions are compared with numerical ones and both results are coincided very well. Both the direct and cross coupled damping coefficients substantially increase with increasing the yield shear stress of ER fluids. Furthermore, the synchronous response analysis of a rigid rotor supported on ER short squeeze film dampers is performed to show the improved damping capability of an ER short squeeze film damper.