Browse > Article
http://dx.doi.org/10.12989/was.2022.34.1.015

PIV study of the flow around a 5:1 rectangular cylinder at moderate Reynolds numbers and small incidence angles  

Guissart, Amandine (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt)
Elbaek, Erik (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt)
Hussong, Jeanette (Institute for Fluid Mechanics and Aerodynamics, Technische Universitat Darmstadt)
Publication Information
Wind and Structures / v.34, no.1, 2022 , pp. 15-27 More about this Journal
Abstract
This work comes within the framework of the "Benchmark on the Aerodynamics of a Rectangular Cylinder" that investigates a rectangular cylinder of length-to-depth ratio equal to 5. The present study reports and discusses velocity fields acquired using planar Particle Image Velocitmetry for several angles of attack and Reynolds numbers. In particular, for a cylinder depth-based Reynolds number of 2 × 104 and zero incidence angle, the flow features along the lateral (parallel to the freestream) upper and lower surfaces of the cylinder are reported. Using first and second order statistics of the velocity field, the main flow features are discussed, especially the size and location of the time-averaged flow structures and the distribution of the Reynolds stresses. The variation of the flow features with the incidence is also studied considering angles of attack up to 6°. It is shown that the time-averaged flow is fully detached for incidence higher than 2°. For an angle of attack of 0°, the effects of the Reynolds number varying between 5 × 103 and 2 × 104 are investigated looking at flow statistics. It is shown that the time-averaged location of the reattachment point and the shape and position of the time-averaged main vortex are mostly constant with the Reynolds number. However, the size of the inner region located below the time-averaged shear layer and just downstream the leading edge corner appears to be strongly dependent on the Reynolds number.
Keywords
BARC; PIV; incidence sensitivity; Reynolds sensitivity; 5:1 rectangular cylinder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moore, D. and Amitay, M. (2021), "Production and migration of turbulent kinetic energy in bluff body shear layers", Int. J. Heat Fluid Flow, 88, 108716. https://doi.org/10.1016/j.ijheatfluidflow.2020.108716.   DOI
2 Moore, D.M., Letchford, C.W. and Amitay, M. (2019), "Energetic scales in a bluff body shear layer", J. Fluid Mech., 875, 543-575. https://doi.org/10.1017/jfm.2019.480.   DOI
3 Nakamura, Y. and Mizota, T. (1975), "Torsional Flutter of Rectangular Prisms", J. Eng. Mech. Div., 101(2), 125-142. https://doi.org/10.1061/JMCEA3.0002001.   DOI
4 Okajima, A. (1983), "Flow around a rectangular cylinder with a section of various width/height ratios", J. Wind Eng. Ind. Aerod., 1983(17), 1-19. https://doi.org/10.5359/JAWE.1983.17_1.   DOI
5 Matsumoto, M., Shirato, H., Araki, K., Haramura, T. and Hashimoto, T. (2003), "Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies", J. Wind Eng. Ind. Aerod., 91(1-2), 155-163. https://doi.org/10.1016/S0167-6105(02)00342-2.   DOI
6 Widmann, A.G.M. (2015), Formation and Detachment of Leading Edge Vortices on Unsteady Airfoils, Ph.D. Dissertation, Technische Universitat Darmstadt, Darmstadt.
7 Rival, D.E. (2009), Development, Control and Recovery of Leading- and Trailing-Edge Vortices in Tandem-Airfoil Configurations, Ph.D. Dissertation, Technische Universitat Darmstadt, Darmstadt.
8 Wu, B., Li, S., Li, K. and Zhang, L. (2020), "Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack", J. Wind Eng. Ind. Aerod., 199, 104097. https://doi.org/10.1016/j.jweia.2020.104097.   DOI
9 Schewe, G. (2013), "Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1:5", J. Fluids Struct., 39, 15-26. https://doi.org/10.1016/j.jfluidstructs.2013.02.013.   DOI
10 Washizu, K., Ohya, A., Otsuki, Y. and Fujii, K. (1978), "Aeroelastic instability of rectangular cylinders in a heaving mode", J. Sound Vib., 59(2), 195-210, https://doi.org/10.1016/0022-460X(78)90500-X.   DOI
11 Yu, D. and Kareem, A. (1998), "Parametric study of flow around rectangular prisms using LES", J. Wind Eng. Ind. Aerod., 77-78, 653-662. https://doi.org/10.1016/S0167-6105(98)00180-9.   DOI
12 Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5:1 rectangular cylinder: Effects of upstreamedge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.   DOI
13 Nakaguchi, H., Hashimoto, K. and Muto, S. (1968), "An experimental study on aerodynamic drag of rectangular cylinders", J. Japan Soc. Aeronaut. Eng., 16(168), 1-5, https://doi.org/10.2322/jjsass1953.16.1.   DOI
14 Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276, https://doi.org/10.1016/j.jweia.2009.10.005.   DOI
15 Crompton, M.J. and Barrett, R.V. (2000), "Investigation of the separation bubble formed behind the sharp leading edge of a flat plate at incidence", Proceedings of the Institution Mech. Eng., Part G: J. Aero. Eng., 214(3), 157-176, https://doi.org/10.1243/0954410001531980.   DOI
16 Mannini, C., Marra, A.M., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5:1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.   DOI
17 Robertson, J.M., Wedding, J.B., Peterka, J.A. and Cermak, J.E. (1978), "Wall pressures of separation-reattachment flow on a square prism in uniform flow", J. Wind Eng. Ind. Aerod., 2(4), 345-359, https://doi.org/10.1016/0167-6105(78)90019-3.   DOI
18 Bartoli, G., Bruno, L., Buresti, G., Ricciardelli, F., Salvetti, M. and Zasso, A. (2008), "BARC overview document", http://www.aniv-iawe.org/barc.
19 Patruno, L., Ricci, M., de Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.   DOI
20 Ricci, M., Patruno, L., de Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comput. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.   DOI
21 Graftieaux, L., Michard, M. and Grosjean, N. (2001), "Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows", Measur. Sci. Technol., 12(9), 1422. https://doi.org/10.1088/0957-0233/12/9/307.   DOI
22 Bruno, L., Coste, N. and Fransos, D. (2012), "Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features", J. Wind Eng. Ind. Aerod., 104-106, 203-215. https://doi.org/10.1016/j.jweia.2012.03.018.   DOI
23 Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106, https://doi.org/10.1016/j.jweia.2014.01.005.   DOI
24 Carassale, L., Freda, A. and Marre-Brunenghi, M. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners", J. Fluids Struct., 44, 195-204, https://doi.org/10.1016/j.jfluidstructs.2013.10.010.   DOI
25 Guissart, A., Andrianne, T., Dimitriadis, G. and Terrapon, V.E. (2019), "Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number", J. Wind Flow Eng. Ind. Aerod., 189, 289-303. https://doi.org/10.1016/j.jweia.2019.03.026.   DOI
26 Cimarelli, A., Leonforte, A. and Angeli, D. (2018), "Direct numerical simulation of the flow around a rectangular cylinder at a moderately high Reynolds number", J. Wind Eng. Ind. Aerod., 174, 39-49, https://doi.org/10.1016/j.jweia.2017.12.020.   DOI
27 Markus, D. (2016), Vermessung des Eiffel-Windkanals des Fachgebietes SLA, Technical Report, Technische Universitat Darmstadt, Darmstadt.
28 Mannini, C., Soda, A. and Schewe, G. (2010), "Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comput. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.   DOI
29 Robertson, J.M., Cermak, J.E. and Nayak, S.K. (1975), "A Reynolds-number effect in flow past prismatic bodies", Mech. Res. Commun., 2(5), 279-282. https://doi.org/10.1016/0093-6413(75)90058-0.   DOI
30 Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016.   DOI
31 Zhang, Z. and Xu, F. (2020), "Spanwise length and mesh resolution effects on simulated flow around a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 202, 104186. https://doi.org/10.1016/j.jweia.2020.104186.   DOI
32 Shimada, K. and Ishihara, T. (2002), "Application of a modified k - ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders", J. Fluids Struct., 16(4), 465-485. https://doi.org/10.1006/jfls.2001.0433.   DOI
33 Tamura, T., Itoh, Y. and Kuwahara, K. (1993), "Computational separated-reattaching flows around a rectangular cylinder", J. Wind Eng. Ind. Aerod., 50, 9-18, https://doi.org/10.1016/0167-6105(93)90056-T.   DOI
34 Mariotti, A., Salvetti, M.V., Shoeibi Omrani, P. and Witteveen, J.A.S. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5:1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.   DOI
35 Stokes, A.N. and Welsh, M.C. (1986), "Flow-resonant sound interaction in a duct containing a plate, II: Square leading edge", J. Sound Vib., 104(1), 55-73, https://doi.org/10.1016/S0022-460X(86)80131-6.   DOI