• Title/Summary/Keyword: Reynolds Stress

Search Result 517, Processing Time 0.024 seconds

Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend (원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Numerical simulation of aerodynamic characteristics of a BWB UCAV configuration with transition models

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.8-18
    • /
    • 2015
  • A numerical simulation for a nonslender BWB UCAV configuration with a rounded leading edge and span of 1.0 m was performed to analyze its aerodynamic characteristics. Numerical results were compared with experimental data obtained at a free stream velocity of 50 m/s and at angles of attack from -4 to $26^{\circ}$. The Reynolds number, based on the mean chord length, is $1.25{\times}106$. 3D multi-block hexahedral grids are used to guarantee good grid quality and to efficiently resolve the boundary layer. Menter's shear stress transport model and two transition models (${\gamma}-Re_{\theta}$ model and ${\gamma}$ model) were used to assess the effect of the laminar/turbulent transition on the flow characteristics. Aerodynamic coefficients, such as drag, lift, and the pitching moment, were compared with experimental data. Drag and lift coefficients of the UCAV were predicted well while the pitching moment coefficient was underpredicted at high angles of attack and influenced strongly by the selected turbulent models. After assessing the pressure distribution, skin friction lines and velocity field around UCAV configuration, it was found that the transition effect should be considered in the prediction of aerodynamic characteristics of vortical flow fields.

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

The Distribution of Chironomids by flow Mechanisms - Numerical Computation - (흐름 메카니즘에 의한 깔따구의 분포(II) - 수치계산 -)

  • Lee, Sang-Ho;Lee, Jung-Min;Kim, Tae-Won;Park, Jong-Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.159-165
    • /
    • 2006
  • Numerical simulation of turbulence flow in a circulating channel was performed. The RNG $k-\varepsilon$ model and Reynolds stress model of the FLUENT was used for evaluating the flow mechanisms. The simulation results were compared with the experimental data measured by a ADV (Acoustic Doppler Velocitmeter). The distribution of chironomids was analyzed by the computational results. They distributed at the region of lower velocities and lower turbulence intensity. In the case of a hemisphere structure being located on the straight section, chironomids lived in the upstream and downstream area of the hemisphere. The secondary currents also affected the distribution of chironomids. In conclusion, the computational fluid dynamic techniques can be inexpensively applied for analysing the relationship between flow characteristics and distribution of benthic macroinvertebrates.

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.