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Abstract

This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. 

In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (αu) and the 

artificial compressibility (β) in conjunction with an upwind method. For the investigations, a code using the modified artificial 

compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The 

cell-centered finite volume method is used in conjunction with Roe’s approximate Riemann solver for the inviscid flux, and the 

central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-

alternate direction implicit method. In addition, Menter’s k-ω shear stress transport turbulence model is adopted for analysis 

of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence 

behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial 

compressibility method with αu >1.0 is given.

Key words: �Computational fluid dynamics, Incompressible Navier-Stokes equations, Upwind method, Artificial compressibility 

method

1. Introduction

Steady solutions of fluid flows can be obtained by solving 

the Euler equations, or the Navier-Stokes equations, with time 

marching methods. The time marching methods, however, 

are not applicable to the incompressible Navier-Stokes 

equations because the continuity equation has no time 

derivative, unlike the momentum equations. To overcome the 

difficulty associated with the lack of the continuity equation, 

Chorin (1967) proposed an artificial compressibility method 

where an artificial time derivative term of pressure is added 

to the continuity equation with an artificial compressibility 

parameter (β). With the modification, various numerical 

techniques, originally developed for hyperbolic equations, 

can be applied to the incompressible Navier-Stokes 

equations.

After Chorin’s pioneering work, many researchers 

applied the artificial compressibility method to various 

incompressible flow analyses. Peyret and Taylor (1983), 

and Rahman and Siikonen (2008) solved the steady flow 

problems using the artificial compressibility method. Merkle 

and Athavale (1987), and Rogers and Kwak (1990) analyzed 

unsteady flows using the dual time stepping method 

with the artificial compressibility method. Turkel (1987) 

suggested a modification of the artificial compressibility 

method, where artificial time derivatives are added to the 

momentum equations as well as the continuity equation. 

This modification introduced an additional parameter (αu). 

The two arbitrary parameters (αu and β) play a significant 

role in the stability and convergence rates of solutions. 

Choice of values, however, requires considerable numerical 

experiments as well as users’ intuition. Some investigations 
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of stability and convergence related to these parameters were 

conducted by Michelassi et al. (1996), Kiris et al. (2006), and 

Esfahanian and Akbarzadeh (2009). Turkel proposed using 

αu = 2.0, which makes the condition number equal to 1. As 

Malan et al. (2002a, b) pointed out, however, when αu = 2.0 

the modifi ed artifi cial compressibility method became less 

robust.

Most research concerned with the modifi ed artifi cial 

compressibility method has so far been based on the central 

diff erence method with the 2nd order and the 4th order 

artifi cial dissipation. Only a few studies adopted upwind 

methods for the artifi cial compressibility method. Pan and 

Chakravarthy (1989) pointed out that the solution with an 

upwind method was no longer independent of the artifi cial 

compressibility parameter, and the built-in dissipation 

associated with the upwind method could contaminate the 

solution. However, they argued that accurate solutions could 

be obtained for a suitable choice of β.

Th e objective of this paper is to investigate convergence 

characteristics of the modifi ed artifi cial compressibility 

method with an upwind method. To achieve this, an analysis 

code is developed based on Roe’s approximate Riemann 

solver. Th e following section contains the numerical method 

used in the paper. Also, Eigenstructure of the incompressible 

Navier-Stokes equations with the modifi ed artifi cial 

compressibility method is given in details. Next, the accuracy 

and the convergence rates of various incompressible 

fl ows are compared. Th e convergence characteristics with 

combinations of the two parameters are also examined. In the 

numerical simulations, the Courant-Friedrichs-Lewy (CFL) 

number is kept constant in order to exclude eff ects of the CFL 

number on the convergence characteristics. Conclusions 

will be drawn from the numerical investigation.

2. Numerical Method

2.1 Governing equations

Th e axisymmetric Reynolds averaged Navier-Stokes 

(RANS) equations and two equation turbulence model 

equations for the incompressible fl ows are chosen as the 

governing equations. Th e modifi ed artifi cial compressibility 

method of Turkel is adopted in order to use a time marching 

method. Th e non-dimensionalized governing equations are 

as follows:

(1)

where F  and Fv are the inviscid vector and the viscous fl ux 

vector respectively. Th e source term, S̃ is defi ned by:

(2)

where S is the source term due to the turbulence model and 

the second term is related to axisymmetry. Two dimensional 

problems can be solved with I = 0 while axisymmetric 

problems can be solved with I = 1. Here, n̂ represents the 

outward normal vector of the computational cell. All of the 

vectors are defi ned as

(3)

where p, u, v, and T are the pressure, the axial velocity 

component, the radial velocity component, and the 

temperature respectively. Also, k, and ω represent the 

turbulence kinetic energy and the specifi c dissipation rate. 

Vn is the normal velocity component. Th e stress tensor are 

defi ned by

(4)

where v is the kinematic viscosity. Γ is the preconditioning 

matrix and is defi ned as follows:

(5)

In Eq. (5), the artifi cial compressibility, β, and the 

preconditioning factor, αu, are user defi ned parameters. 

By setting αu = 0.0, Eq. (1) becomes the original artifi cial 

compressibility method. Turkel (1992) suggested that a 

constant β be used for a good convergence rate.

2.2 Numerical schemes

Th e cell-centered fi nite volume method is applied to Eq. 

(1). Th e semi-discretized equation is found to be:
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(6)

where the residual term is defi ned as

(7)

Th e total fl ux vector, F̃, is defi ned as follows

(8)

In Eq. (8), F̃c and F̃v represent the inviscid and viscous fl ux 

vectors respectively. Th e viscous fl ux vectors are evaluated 

with the gradient theorem, which is equivalent to the 

central diff erence in the Cartesian coordinate system. Th e 

inviscid fl ux vectors are computed with Roe’s approximation 

Riemann solver (Roe, 1981). Th e numerical fl ux vector of 

Roe’s method is given by:

(9)

where ∆Q = QR−QL, and F̃R and F̃L represent the fl ux 

computed using the right state, QR and left state, QL on 

each side of the computational cell faces. In addition, the 

monotone upstream-centered schemes for conservation 

laws (Van Leer, 1979) and van Albada’s limiter are applied 

in order to obtain higher-order spatial accuracy. Th e inviscid 

fl ux vector normal to the cell surface, F̌ is defi ned by:

F̌ = F
 
· n̂, (10)

Th e Jacobian matrix, AΓ is defi ned by

(11)

Th e eigenvalues of the preconditioned system (1) are found 

to be:

(12)

where

(13)

(14)

(15)

From Eq. (12)-(15), αu and β are closely connected to 

wave speed, which has signifi cant impact on convergence 

rate, particularly αu = 2.0, λ2, 3 become ∓β so that they are 

independent of the fl ow velocity. Also, the condition number, 

|λ2 / λ3|, becomes one. For this reason, Turkel proposed using 

αu = 2.0 for the convergence rate. Th e matrix |AΓ | represented 

in Eq. (9) is defi ned by:

(16)

where XΓ  is modal matrix derived from the preconditioned 

system. Th e diagonal matrix, AΓ is given by:

(17)

Th e modal matrix is defi ned by:

(18)

Th us, the determinant of XΓ is:

(19)

Equation (19) indicates that the determinant can be zero 

when αu>1.0. Th is causes Roe’s numerical fl ux vector to 

become unbounded. Th e upwind method fails as the 

determinant of XΓ approaches zero. When αu = 2.0, β should 

be chosen to satisfy the following equation for the entire 

computational domain:

(20)

Turkel (1987) derived the same expression as Eq. (20) from 

the symmetrizability requirement of the system. When 

central diff erence methods are used, this manifests as loss 

of robustness, which was observed by Malan et al. (2002a, 

b). Most boundary condition methods use characteristic 

information to determine the solution variables along the 

computational boundaries. When the determinant of XΓ 

becomes zero, therefore, the boundary condition methods 

fail. When αu = 2.0, therefore, the value of β should be large 

enough to satisfy Eq. (20) for the entire computational 

domain.

For the time-integration method, the approximated 

factorization-alternate direction implicit method (Beam and 

Warming, 1982) is employed. Detailed information of time 

discretization can be found in Beam and Warming’s study.
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2.3 Turbulence model

Menter’s k−ω shear stress transport (SST) turbulence 

model (Menter, 1994) is used to compute the turbulent fl ows. 

Menter’s model uses the turbulent kinetic energy (k) and the 

specifi c dissipation rate (ω) as turbulence variables. Th e 

eddy viscosity is evaluated by Eq. (21):

(21)

where the blending function, F2 is defi ned by:

(22)

Other details of the parameters and source term of the k−ω 

SST turbulence model can be found in Menter’s study.

3. Computational Results

3.1 Inviscid fl ow around a circular cylinder

As the fi rst computational example, an inviscid fl ow 

around a circular cylinder is calculated. Th is test case is 

chosen to verify the accuracy of the upwind method and the 

grid convergence of the modifi ed artifi cial compressibility 

method in conjunction with the upwind method. Th e 

simulations are performed,increasing grid size in variation 

of β. Th e grid sizes used are listed in Table 1. Th e errors are 

defi ned as:

(23)

where qapp and qexact are the numerical and exact solutions 

respectively. Here, Vi and V are the cell volume and the 

total volume respectively, of the computational domain. 

Figure 1 shows the result of the grid convergence test. Th e 

values of β in this fi gure cover the entire range where the 

converged solution could be obtained. Figure 2 presents 

the computed surface pressure coeffi  cient distributions as 

well as the potential solution. All solutions with diff erent β’s 

overlap with each other as well as with the exact solution. 

Th e numerical solutions converge into the exact solutions as 

the mesh size decreases for the range of β. In other words, 

Fig. 1. Grid convergence with variation of β (αu = 0.0).

Table 1. Grid size used for circular cylinder

Case Grid size (1/N)1/2

1 80×43 0.017049

N = imax×jmax

2 159×85 0.008602

3 317×169 0.004320

4 633×337 0.002165
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the accuracy of the solution is guaranteed when a converged 

solution is obtained (Lax equivalence theorem). Moreover, 

Roe’s method satisfi es the consistency when applied to the 

artifi cial compressibility method. Th e numerical dissipation 

for the fi rst order upwind method for the Cartesian coordinate 

system can be expressed as:

(24)

where AΓ and BΓ are the Jacobian matrices of the Cartesian 

fl ux vectors, E and F. Th at is:

(25)

From Eq. (24), it is clear that the numerical dissipation 

vanishes as ∆x, ∆y → 0. Similarly, the numerical dissipation 

of high order methods vanishes as the mesh size decreases.
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3.2 Inviscid flow around a NACA0012 airfoil

To compare convergence rate with the combinations of αu 

and β, an inviscid flow around an NACA0012 airfoil is solved. 

Simulations are performed with a C-type grid of 257×65. The 

CFL number is set to 5.0 for all simulations. Figure 3 shows 

the surface pressure coefficient distributions at angle of 

attack (AOA) of 3.0 degrees. From Fig. 3, it is clear that the 

pressure coefficients of the converged solutions are highly 

accurate, regardless of αu. Also, a result of a panel code is 

presented for comparison, indicating the accuracy of the 

artificial compressibility methods.

The convergence histories with various αu and β 

combinations are plotted in Fig. 4. All computations are 

performed with an AOA of 0.0 degree. In the figure, the 

horizontal lines indicate that the computations fail. From 

the figure, it is clear that there exists an optimal value for 

convergence. For this case, β of 5.0 gives the best convergence. 

When Figs. 4b and c are compared with Fig. 4a, the modified 

artificial compressibility method has better convergence 

characteristics than the original method with the value of 

β greater than 1. As predicted with Eq. (20), the modified 

artificial compressibility method with αu = 2.0 suffers loss of 

robustness for a small value of β. Figure 5 depicts the contour 

plots of the determinant of the modal matrix with various 

combinations of αu and β. There are no singular regions in 

the entire computational domain for β = 0.5, and β = 0.5 

with αu = 0.0. However, singular regions are found near the 

leading edge of the airfoil, with αu = 2.0, and β = 0.5. Figure 

6 shows the convergence histories at three angles of attack; 

0.0, 1.25, and 3 degrees. All the computations are made with 
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the optimal values of β = 5.0. As can be seen from the figure, 

the modified artificial compressibility method with αu = 2.0 

performs best when compared with other αu.

3.3 Laminar flow around a sphere

The second example of examinining convergence 

characteristics is a laminar flow around a sphere. It is well- 

known that flow around a sphere is steady and axisymmetric 

when Re<220. However, the flow becomes unsteady and 
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three-dimensional when Re>220. In this paper, numerical 

simulations are performed with Reynolds numbers less 

than 220. An O-type computational grid of 129×57 is used 

for the computations. The CFL number is set to 3.0 for all 

computations. Figure 7 depicts the streamlines around the 

sphere at four different Reynolds numbers; 30, 50, 100, and 

150. The size of the separation bubble behind the sphere 

increases commensurately to the Reynolds number. The 

drag coefficients computed with different values of αu are 

presented in Fig. 8. The drag coefficient measured by Roos 

and Willmarth (1971) and the drag coefficients computed by 

Mittal (1999) and Sheard et al. (2003) are also presented for 

comparison. The results of the present study match well with 

results of previous research.

Figure 9 depicts convergence histories of the sphere 

problem with various combinations of αu and β. The 

Reynolds number of all the results in this figure is 100. Unlike 

the previous example, the best convergence rate is achieved 

with the different values of β for each values of αu. It confirms 

the conclusions from the previous example that there exists 

an optimal value of β for best convergence rate and that the 

modified artificial compressibility method with αu = 2.0 has 

the best convergence characteristics at the optimal value of 

the compressibility factor. In particular, Fig. 9c indicates that 

the computations with αu = 2.0 fail with values of β that are 

less than 1.0 as in the previous problem. Figure 10 depicts 

the convergence histories at various Reynolds numbers. This 

figure confirms that the modified method, with αu = 2.0, yields 

the highest convergence rate while the original method gives 

the lowest convergence rate.

Fig. 9. Convergence histories for a sphere problem (Re = 100).

21 

+

+

+

+
+

++ + +

Reynolds Number

C
d

101 102 1030

1

2

3

4

5

αu=0.0
αu=1.0
αu=2.0
Rooes & Willmarth experiment
Mittal experiment
Sheard et al computation

+

Fig. 8. Drag coefficients of a sphere versus the Reynolds numbers ( 5.0β = ).Fig. 8. �Drag coefficients of a sphere versus the Reynolds numbers (β = 
5.0).

22 

 

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000-16

-14

-12

-10

-8

-6

-4

-2

0

β = 0.1
β = 0.5
β = 1.0
β = 5.0
β = 10.0

 
(a) 0.0uα =

 

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000-16

-14

-12

-10

-8

-6

-4

-2

0

β = 0.1
β = 0.5
β = 1.0
β = 5.0
β = 10.0

 
(b) 1.0uα =

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000-16

-14

-12

-10

-8

-6

-4

-2

0

β = 0.1
β = 0.5
β = 1.0
β = 5.0
β = 10.0

 
(c) 2.0uα =

Fig. 9. Convergence histories for a sphere problem ( Re 100= ). 



DOI:10.5139/IJASS.2011.12.4.318 326

Int’l J. of Aeronautical & Space Sci. 12(4), 318–330 (2011)

23 

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000
-16

-14

-12

-10

-8

-6

-4

-2

0

αu=0.0
αu=1.0
αu=2.0

(a) Re 10=

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000
-16

-14

-12

-10

-8

-6

-4

-2

0

αu=0.0
αu=1.0
αu=2.0

(b) Re 50=

Iteration Number

R
es

id
ua

l

0 5000 10000 15000 20000
-16

-14

-12

-10

-8

-6

-4

-2

0

αu=0.0
αu=1.0
αu=2.0

(c) Re 100=

Fig. 10. Convergence histories with variation of the Reynolds number ( 5.0β = ).
Fig. 10. �Convergence histories with variation of the Reynolds number 

(β = 5.0).
Fig. 11.� Velocity profiles at several axial locations of plate (αu = 0.0, β = 

5.0).

24 

y+

u+

100 101 102 103 104 1050

5

10

15

20

25

30

Present k-ω SST
Qt2d k-ω SST
The law of the wall
Coles & Hirst Experiment

Rex = 2.70 x 106

(a) 6Re 2.70 10x = ×

y+

u+

100 101 102 103 104 1050

5

10

15

20

25

30

Present k-ω SST
Qt2d k-ω SST
The law of the wall
Coles & Hirst Experiment

Rex = 7.62 x 106

(b) 6Re 7.62 10x = ×

y+

u+

100 101 102 103 104 1050

5

10

15

20

25

30

35

Present k-ω SST
Qt2d k-ω SST
The law of the wall
Coles & Hirst Experiment

Rex = 1.03 x 107

(c) 7Re 1.03 10x = ×

Fig. 11. Velocity profiles at several axial locations of plate ( 0.0, 5.0uα β= = ).



327

Hyungro Lee    Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

http://ijass.org

3.4 Turbulent flat plate flow

A turbulent flow over a flat plate flow is selected to study 

the convergence characteristics of the modified artificial 

compressibility method for turbulent flows. The size of the 

computational grid is 111×81. The first grid spacing above 

the wall satisfies the requirement of y+<1 so that the turbulent 

boundary layer can be correctly resolved. For all the 

computations, the CFL number of 5.0, the preconditioning 

factor, αu of 0.0, and the artificial compressibility factor, β of 

0.5 are used. Although the results with the original method 

(αu = 0.0) are only represented here, there is little difference in 

the results with αu = 0.0, and αu = 1.0. However, the converged 

solution could not be obtained with αu = 2.0 with β = 0.5, as 

in laminar computations. Figure 11 exhibits the turbulent 

boundary layer profiles at three different locations: Rex = 

2.70×106, 7.62×106, and 1.03×107. The experimental data of 

Kline et al. (1969), the numerical result of Ryu et al. (2006), 

and the law of wall are also presented for comparison. The 

result of Ryu et al. (2006) was obtained with a compressible 

RANS solver (QT2D) and Menter’s k−ω SST turbulence 

model. Excellent agreement can be observed from the figure. 

Figure 12 compares the computed skin friction coefficient 

with Ryu et al. (2006)’s result, the experimental data, and the 

1/7th law and Schlichting’s formula (1979). It is noted that 

the computation is performed with the assumption of fully-

turbulent flow.

In Fig. 13, convergence histories are compared for 

the combinations of αu and β. For the original artificial 

compressibility method, the convergence rates with β = 0.5 

and 1.0 are relatively high. A similar trend with αu = 1.0 can 

be observed from the figure. It is interesting to notice that 

Fig. 13. Convergence histories for flat-plate problem.
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the optimal value of β, to achieve good convergence, is less 

than that of the inviscid or laminar problems. This difference 

is thought to come from high aspect ratio of computational 

cells near the solid wall, for the resolution of the turbulent 

boundary layer. The stability characteristics of the artificial 

compressibility method associated with high aspect ratio 

cells would be an interesting research topic. Figure 13c 

shows that converged solutions cannot be not obtained with 

β<1.0 because of the zero determinant problem mentioned 

earlier. It is especially noticeable that the convergence with 

β = 5.0 suddenly stalls after 13,000 iterations. The result also 

confirms that the modified artificial compressibility method 

with αu = 2.0 becomes less robust.

3.5 Turbulent flow passing over a bump

As the final example, the turbulent flow over a bump is 

selected. This example is one validation case of turbulence 
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modeling resource at the Langley Research Center website. 

A grid of 353×161 is downloaded from the website and used 

for the computation. The first grid spacing above the wall 

satisfies the grid resolution requirement of y+<1. The Reynolds 

number based on the length of the bump is 3.0×106. The CFL 

number of 5.0 is used for the simulations. The results of the 

numerical simulations are compared with CFL3D (Langley 

Research Center, 2011) and QT2D, where the freestream 

Mach number is 0.2. The turbulence model in CFL3D is k−ω 

SST-V, which is a modified version of the k−ω SST model, 

while QT2D uses the k−ω SST model. Figure 14 compares the 

pressure coefficient and the skin friction coefficient with the 

other results. The results match well with each other.

Figure 15 represents convergence histories with 

combinations of β and αu. The figure shows that there exists 

an optimal value of β for good convergence, and the modified 

artificial compressibility method with αu = 2.0 are the least 

robust.

4. Conclusions

In this study, an incompressible RANS code, which uses 

the modified artificial compressibility method of Turkel and 

the upwind method of Roe, was developed; the convergence 

characteristics were studied for various incompressible 

flow problems. It is confirmed numerically and analytically 

that the accuracy of the solution can be assured with the 

upwind method and the artificial compressibility method. 

The modified artificial compressibility method has superior 

convergence characteristics compared to the original 

method. However, the modified artificial compressibility 

method with αu = 2.0 can fail when used with a low value 

of β for both the upwind method and the central difference 

method. It is shown that this loss of robustness comes from 

the fact that the determinant of the modal matrix can be zero 

when αu>1.0. 
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