• Title/Summary/Keyword: Reynolds Number

Search Result 2,363, Processing Time 0.029 seconds

AN IMMERSED BOUNDARY METHOD FOR LOW REYNOLDS NUMBER FLOWS (저 레이놀즈수에 적용 가능한 가상경계기법)

  • Park, Hyun Wook;Lee, Changhoon;Choi, Jung-Il
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.34-41
    • /
    • 2013
  • We develop a novel immersed boundary (IB) method based on implicit direct forcing scheme for incompressible flows. The proposed IB method is based on an iterative procedure for calculating the direct forcing coupled with the momentum equations in order to satisfy no-slip boundary conditions on IB surfaces. We perform simulations of two-dimensional flows over a circular cylinder for low and moderate Reynolds numbers. The present method shows that the errors for estimated velocities on IB surfaces are significantly reduced even for low Reynolds number with a fairly large time step while the previous methods based on direct forcing failed to provide no-slip boundary conditions on IB surfaces.

Numerical Prediction of Turbulent Flow over a Circular Cylinder (원봉주위의 난류유동에 대한 수치해석)

  • Park T. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Flow over a circular cylinder is studied numerically using a turbulence model. Based on the κ-ε-f/sub μ/ model of Park and Sung[6], a new damping function is used. The efficiency of the strain dependent damping function is addressed for vortex-shedding flows past a circular cylinder. The mean velocity and Reynolds stresses are compared with available experimental data at Re/sub D/= 3900. Also, the computational results for the Strouhal number are evaluated at several Reynolds number. The predictions by κ-ε-f/sub μ/ model are in good agreement with the experiments.

A Study on High Reynolds Number Flow in Two-Dimensional Closed Cavity (2차원 밀폐 캐비티의 고레이놀즈수 흐름에 관한 연구)

  • 최민선;송치성;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Two-dimensional lid-driven closed flows within square cavity were studied numerically for four Reynolds numbers : $10^4$, 3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$. A convective difference scheme to maintain the same spatial accurary by irregular grid correction is adopted by applying the interior division principle. Grid number is $80\times80$and its minimum size is about 1/400 of the cavity height. At Re=$10^4$, periodic migration of small eddies appearing in corner separation region and its temporal sinusoidal fluctuation are represented. At three higher Reynolds numbers(3$\times10^4$, 5$\times10^4$ and 7.5$\times10^4$), an organizing structure of four consecutive vorticles at two lower corners is revealed from time-mean flow patterns. But, instantaneous flow characteristics show very random unsteady fluctuation mainly due to the interaction between rotating shed vortices and stationary eddies within the corners.

  • PDF

An experimental study of flow separation around a circular cylinder with Reynolds number and free stream turbulence intensity variations (Reynolds수와 난류강도의 변화에 따른 실린더 주위 유동 박리점의 거동에 관한 실험적 연구)

  • Im,Yong-Seop;Son, Dong-Gi;Yang, Gyeong-Su;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.889-898
    • /
    • 1998
  • The influences of the Reynolds number and free-stream turbulence intensity on the flow separation behavior around a circular were investigated experimentally. The range of the Reynolds number and turbulence intensity considered are 10,000 ~ 45,000 and 0.3 ~ 6.8%, respectively. Because of ineffectiveness of using time-mean value of hot-film sensor signals in determining the separation location around the cylinder, a new method using phase-difference of hot-film sensor signals with hot-wire being located in shedding vortex is suggested. The validity of the present method is confirmed by the comparison with flow visualization.

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.

A Study of the Flow Phenomenon of Water in a Channel with Flat Plate Obstruction Geometry at the Entry

  • Khan, M.M.K.;Kabir, M.A.;Bhuiyan, M.A.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.879-887
    • /
    • 2003
  • The flow in a parallel walled test channel, when obstructed with a geometry at the entrance, can be forward, reverse and stagnant depending on the position of the obstruction. This interesting flow phenomenon has potential benefit in the control of energy and various flows in the process industry In this experiment, the flat plate obstruction geometry was used as an obstruction at the entry of the test channel. The parameters that influence the flow inside and around the test channel were the gap (g) between the test channel and the obstruction geometry, the length (L) of the test channel and the Reynolds number (Re). The effect of the gap to channel width ratio (g/w) on the magnitude of the velocity ratio (V$\_$i/ / V$\_$o/ : velocity inside/ velocity outside the test channel) was investigated for a range of Reynolds numbers. The maximum reverse flow observed was nearly 20% to 60% of the outside velocity for Reynolds number ranging from 1000 to 9000 at g/w ratio of 1.5. The maximum forward velocity inside the test channel was found 80% of the outside velocity at higher g/w ratio of 8. The effect of the test channel length on the velocity ratio was investigated for different g/w ratios and a fixed Reynolds number of 4000. The influence of the Reynolds number on the velocity ratio is also discussed and presented for different gap to width ratio (g/w). The flow visualisation photographs showing fluid motion inside and around the test channel are also presented and discussed.

Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region (저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Cho, Jin-Pyo;Oh, Wang-Kyu;Kim, Nae-Hyun;Youn, Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.

Reynolds Number Effects on the Near-Wake of an Oscillating Airfoil, Part 2: Turbulent Intensity (진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 2: 난류강도)

  • Jang,Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.8-18
    • /
    • 2003
  • An experimental study is carried out to investigate the Reynolds number effects on the near-wake of an airfoil oscillating in pitch. An NACA 4412 airfoil is sinusoidally pitched about the quarter chord point between the angle of attack -6$^{\circ}$ and +6$^{\circ}$. A hot-wire anemometer is used to measure the turbulent intensity in the near-wake region of an NACA 4412 airfoil. The freestream velocities of present work are 3.4, 12.4, 26.2 m/s, and the corresponding Reynolds numbers are $5.3{\times}10^4,\;1.9{\times}10^5,\;4.1{\times}10^5$ and the reduced frequency is 0.1. Axial turbulent intensity profiles are presented to show the Reynolds number effects on the near-wake region behind an airfoil oscillating in pitch. All the cases in these measurements show that the turbulent intensities by the change of the Reynolds number are very large at the lowest Reynolds number $R_N=5.3{\times}10^4$; and are small at the other Reynolds number $(R_N=1.9{\times}10^5\;and\;4.1{\times}10^5)$ in the near-wake region. The significant difference of turbulent intensity between $R_N=5.3{\times}10^4,\;and\;1.9{\times}l0^5$ is observed. A critical value of the Reynolds number in the near-wake of an oscillating NACA 4412 airfoil which indicates laminar separation, no separation or turbulent separation exists in the range between $R_N=5.3{\times}10^4\;and\;1.9{\times}10^5$.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 -)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.