DOI QR코드

DOI QR Code

Reynolds Number Effects on the Near-Wake of an Oscillating Airfoil, Part 2: Turbulent Intensity

진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 2: 난류강도

  • 장조원 (한국항공대학교 항공운항학과)
  • Published : 2003.10.01

Abstract

An experimental study is carried out to investigate the Reynolds number effects on the near-wake of an airfoil oscillating in pitch. An NACA 4412 airfoil is sinusoidally pitched about the quarter chord point between the angle of attack -6$^{\circ}$ and +6$^{\circ}$. A hot-wire anemometer is used to measure the turbulent intensity in the near-wake region of an NACA 4412 airfoil. The freestream velocities of present work are 3.4, 12.4, 26.2 m/s, and the corresponding Reynolds numbers are $5.3{\times}10^4,\;1.9{\times}10^5,\;4.1{\times}10^5$ and the reduced frequency is 0.1. Axial turbulent intensity profiles are presented to show the Reynolds number effects on the near-wake region behind an airfoil oscillating in pitch. All the cases in these measurements show that the turbulent intensities by the change of the Reynolds number are very large at the lowest Reynolds number $R_N=5.3{\times}10^4$; and are small at the other Reynolds number $(R_N=1.9{\times}10^5\;and\;4.1{\times}10^5)$ in the near-wake region. The significant difference of turbulent intensity between $R_N=5.3{\times}10^4,\;and\;1.9{\times}l0^5$ is observed. A critical value of the Reynolds number in the near-wake of an oscillating NACA 4412 airfoil which indicates laminar separation, no separation or turbulent separation exists in the range between $R_N=5.3{\times}10^4\;and\;1.9{\times}10^5$.

진동하는 에어포일의 근접후류에서의 레이놀즈수 효과를 조사하기 위한 실험적 연구가 수행되었다. NACA 4412에어포일은 1/4 시위 지점을 중심으로 조화적으로 피칭운동을 하고, 순간받음각은 +6$^{\circ}$에서 -6$^{\circ}$까지 진동되도록 하였다. 진동하는 에어포일의 근접후류에서의 난류강도를 측정하기 위하여 열선풍속계를 사용하였다. 본 연구에서 자유류의 속도는 3.4, 12.4, 26.2 m/s이다. 이러한 자유류 속도에 따른 시위 레이놀즈수는 $R_N=5.3{\times}10^4$, $1.9{\times}10^5$, $4.1{\times}10^5$이고, 무차원 진동수는 K=0.1이다. 레이놀즈수가 진동하는 에어포일의 근접후류에 미치는 영향을 나타내는 축방향 난류강도 분포를 제시하였다. 본 측정에서 모든 경우에 난류 강도는 $R_N=5.3{\times}10^4$인 경우에 아주 크고, $R_N=1.9{\times}10^5$$4.1{\times}10^5$인 경우에는 작다는 것을 관찰할 수 있었다. 진동하는 에어포일의 근접후류에서 레이놀즈수의 임계값은 층류분리인 경우, 분리가 발생하지 않거나 난류분리인 경우로 구분되며, 그 값은 $R_N=5.3{\times}10^4\;{\sim}\;1.9{\times}10^5$사이에 존재한다.

Keywords

References

  1. McCrosky, W. J., "Unsteady Airfoils," Annual Review of Fluid Mechanics, Vol. 14, 1982, pp. 285-311. https://doi.org/10.1146/annurev.fl.14.010182.001441
  2. Carr, L. W., "Progress in Analysis and Prediction of Dynamic Stall," Journal of Aircraft, Vol. 25, No. 1, Jan. 1988, pp. 6-17. https://doi.org/10.2514/3.45534
  3. Ohsima H., and Ramaprian, B. R., "Velocity Measurements over a Pitching Airfoil," AIAA Journal, Vol. 35, No. 1, Jan. 1997, pp. 119-126. https://doi.org/10.2514/2.71
  4. Lakshminarayana B., Reynolds B., "Turbulence Characteristics in the Near Wake of a Compressor Rotor Blade," AIAA Journal, Vol. 18, No. 11, Nov. 1980, pp. 1354-1362. https://doi.org/10.2514/3.50891
  5. Satyanarayana, B. , "Unsteady Wake Measurements of Airfoils and Cascades," AIAA Journal, Vol. 15, No. 5, May 1977, pp. 613-618. https://doi.org/10.2514/3.60668
  6. De Ruyck, J. and Hirsch, C., "Instantaneous Turbulence Profiles in the Wake of an Oscillating Airfoil," AIAA Journal, Vol. 21, No. 5, May 1983, pp. 641-642. https://doi.org/10.2514/3.8128
  7. Park, S. O., Kim, J. S., Lee B. I., "Hot- Wire Measurements of Near Wakes Behind an Oscillating Airfoil," AIAA Journal, Vol. 28, No. 1, Jan. 1990, pp. 22-28. https://doi.org/10.2514/3.10348
  8. Muti Lin, J. C., and Pauley, L. L., "Low-Reynolds-number Separation on an Airfoil," AIAA Journal, Vol. 34, No. 8, Aug. 1996, pp. 1570-1577. https://doi.org/10.2514/3.13273
  9. McGhee, R. J., and Walker B. S., "Performance Measurements of an Airfoil at Low Reynolds Numbers," Proceeding of the Low Reynolds Number Aerodynamics Conference, Notre Dame, Indiana, June 5-7, 1989, pp. 131-145.
  10. Mueller T. J., and Batill, S. M., "Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reynolds Numbers," AIAA Journal, Vol. 20, No. 4, 1982, pp. 457-463. https://doi.org/10.2514/3.51095
  11. 장조원, “진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 I : 평균속도장”, 한국항공우주학회지, 제31권, 7호, 2003, pp 15-25.
  12. Chang, Jo Won, and Eun, Hee-Bong, "Reduced Frequency Effects on the Near-Wake of an Oscillating Elliptic Airfoil," KSME International Journal, Vol. 17, No. 8, Aug. 2003, pp. 1234-1245.
  13. Ohmi K., Coutanceau M., Loc T. P., Dulieu A., "Vortex Formation around an Oscillating and Translating Airfoil at Large Incidence," Journal of Fluid Mechanics, Vol. 211, 1990, pp. 37-60. https://doi.org/10.1017/S0022112090001483
  14. Kanevce, G. and Oka, S., "Correcting Hot-wire Reading for Influence of Fluid Temperature Variations," DISA Information, No. 15, Oct. 1973, pp. 21-24
  15. Schlichting, H., "Boundary Layer Theory," 7th Ed., McGraw Hill Book Co., New York, 1979, pp. 39-42.
  16. Arena, A. V., Mueller T. J., "Laminar Separation, Transition, and Turbulent Reattachment near the Leading Edge of Airfoils," AIAA Journal, Vol. 18, No. 7, 1980, pp. 747-753. https://doi.org/10.2514/3.50815
  17. Chang, Jo Won, and Yoon, Yong Hyun, "Camber Effects on the Near-Wake of Oscillating Airfoils," Journal of Aircraft, Vol. 39, NO. 4, July-August 2002. pp. 713-716. https://doi.org/10.2514/2.2987
  18. Chang, Jo Won, and Park, Seung O, "Measurements in the Tip Vortex Roll-up Region of an Oscillating Wing," AIAA Journal, Vol. 38, No. 6, June 2000, pp. 1092-1095. https://doi.org/10.2514/2.1072
  19. Chang, Jo Won, and Park, Seung O, "A Visualization Study of Tip Vortex Roll-up of an Oscillating Wing," Journal of Flow Visualization and Image Processing, Vol. 6, No. 1, 1999, pp. 79-87. https://doi.org/10.1615/JFlowVisImageProc.v6.i1.70
  20. 장조원, 박승오, “진동하는 날개의 Tip Vortex Roll-up에 관한 실험적 연구 II : 와도 및 순환”, 한국항공우주학회지, 제27권, 제6호, 1999, pp.1-10.