• Title/Summary/Keyword: Review data mining

Search Result 275, Processing Time 0.025 seconds

Analysis of Healthcare Quality Indicator using Data Mining and Decision Support System

  • Young M.Chae;Kim, Hye S.;Seung H. Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.352-357
    • /
    • 2001
  • This study presents an analysis of healthcare quality indicators using data mining for developing quality improvement strategies. Specifically, important factors influencing the inpatient mortality were identified using a decision tree method for data mining based on 8,405 patients who were discharged from the study hospital during the period of December 1, 2000 and January 31, 2001. Important factors for the inpatient mortality were length of stay, disease classes, discharge departments, and age groups. The optimum range of target group in inpatient healthcare quality indicators were identified from the gains chart. In addition, a decision support system was developed to analyze and monitor trends of quality indicators using Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. In the future, other quality indicators should be analyze to effectively support a hospital-wide continuous quality improvement (CQI) activity and the decision support system should be well integrated with the hospital OCS (Order Communication System) to support concurrent review.

  • PDF

Predicting Movie Revenue by Online Review Mining: Using the Opening Week Online Review (영화 흥행성과 예측을 위한 온라인 리뷰 마이닝 연구: 개봉 첫 주 온라인 리뷰를 활용하여)

  • Cho, Seung Yeon;Kim, Hyun-Koo;Kim, Beomsoo;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.113-134
    • /
    • 2014
  • Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.

Study on prediction for a film success using text mining (텍스트 마이닝을 활용한 영화흥행 예측 연구)

  • Lee, Sanghun;Cho, Jangsik;Kang, Changwan;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1259-1269
    • /
    • 2015
  • Recently, big data is positioning as a keyword in the academic circles. And usefulness of big data is carried into government, a local public body and enterprise as well as academic circles. Also they are endeavoring to obtain useful information in big data. This research mainly deals with analyses of box office success or failure of films using text mining. For data, it used a portal site 'D' and film review data, grade point average and the number of screens gained from the Korean Film Commission. The purpose of this paper is to propose a model to predict whether a film is success or not using these data. As a result of analysis, the correct classification rate by the prediction model method proposed in this paper is obtained 95.74%.

Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis

  • Shin, Bee;Ryu, Sohee;Kim, Yongjun;Kim, Dongwhan
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The importance of online reviews is prevalent as more people access goods or places online and make decisions to visit or purchase. However, such reviews are generally provided by short sentences or mere star ratings; failing to provide a general overview of customer preferences and decision factors. This study explored and broke down restaurant reviews found on Google Maps. After collecting and analyzing 5,427 reviews, we vectorized the importance of words using the TF-IDF. We used a random forest machine learning algorithm to calculate the coefficient of positivity and negativity of words used in reviews. As the result, we were able to build a dictionary of words for positive and negative sentiment using each word's coefficient. We classified words into four major evaluation categories and derived insights into sentiment in each criterion. We believe the dictionary of review words and analyzing the major evaluation categories can help prospective restaurant visitors to read between the lines on restaurant reviews found on the Web.

Design and Implementation of Opinion Mining System based on Association Model (연관성 모델에 기반한 오피년마이닝 시스템의 설계 및 구현)

  • Kim, Keun-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.133-140
    • /
    • 2011
  • For both customers and companies, it is very important to analyze online customer reviews, which consist of small documents that include opinions or experiences about products or services, because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we propose the association model for the opinion mining which can analyze customer opinions posted on web. The association model is to modify the association rules mining model in data mining in order to apply efficiently and effectively the association mining techniques to the opinion mining. We designed and implemented the opinion mining systems based on the modified association model and the grouping idea which would enable it to generate significant rules more.

Learning Graphical Models for DNA Chip Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.59-60
    • /
    • 2000
  • The past few years have seen a dramatic increase in gene expression data on the basis of DNA microarrays or DNA chips. Going beyond a generic view on the genome, microarray data are able to distinguish between gene populations in different tissues of the same organism and in different states of cells belonging to the same tissue. This affords a cell-wide view of the metabolic and regulatory processes under different conditions, building an effective basis for new diagnoses and therapies of diseases. In this talk we present machine learning techniques for effective mining of DNA microarray data. A brief introduction to the research field of machine learning from the computer science and artificial intelligence point of view is followed by a review of recently-developed learning algorithms applied to the analysis of DNA chip gene expression data. Emphasis is put on graphical models, such as Bayesian networks, latent variable models, and generative topographic mapping. Finally, we report on our own results of applying these learning methods to two important problems: the identification of cell cycle-regulated genes and the discovery of cancer classes by gene expression monitoring. The data sets are provided by the competition CAMDA-2000, the Critical Assessment of Techniques for Microarray Data Mining.

  • PDF

A Critical Analysis of Learning Technologies and Informal Learning in Online Social Networks Using Learning Analytics

  • Audu Kafwa Dodo;Ezekiel Uzor OKike
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • This paper presents a critical analysis of the current application of big data in higher education and how Learning Analytics (LA), and Educational Data Mining (EDM) are helping to shape learning in higher education institutions that have applied the concepts successfully. An extensive literature review of Learning Analytics, Educational Data Mining, Learning Management Systems, Informal Learning and Online Social Networks are presented to understand their usage and trends in higher education pedagogy taking advantage of 21st century educational technologies and platforms. The roles of and benefits of these technologies in teaching and learning are critically examined. Imperatively, this study provides vital information for education stakeholders on the significance of establishing a teaching and learning agenda that takes advantage of today's educational relevant technologies to promote teaching and learning while also acknowledging the difficulties of 21st-century learning. Aside from the roles and benefits of these technologies, the review highlights major challenges and research needs apparent in the use and application of these technologies. It appears that there is lack of research understanding in the challenges and utilization of data effectively for learning analytics, despite the massive educational data generated by high institutions. Also due to the growing importance of LA, there appears to be a serious lack of academic research that explore the application and impact of LA in high institution, especially in the context of informal online social network learning. In addition, high institution managers seem not to understand the emerging trends of LA which could be useful in the running of higher education. Though LA is viewed as a complex and expensive technology that will culturally change the future of high institution, the question that comes to mind is whether the use of LA in relation to informal learning in online social network is really what is expected? A study to analyze and evaluate the elements that influence high usage of OSN is also needed in the African context. It is high time African Universities paid attention to the application and use of these technologies to create a simplified learning approach occasioned by the use of these technologies.

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.