• Title/Summary/Keyword: Reversed Bending

Search Result 39, Processing Time 0.027 seconds

An optimal design of 4${\times}$4 optical matrix switch (4${\times}$4 매트릭스 광스위치의 최적 설계)

  • Choi, Won-Jun;Hong, Song-Cheol;Lee, Seok;Kim, Hwe-Jong;Lee, Jung-Il;Kang, Kwang-Nham;Cho, Kyu-Man
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.153-165
    • /
    • 1995
  • The design procedure of a GaAs/AlGaAs semiconductor matrix optical switch is presented for a simplified tree architecture in the viewpoint of optical loss. A low loss, 0.537 dB/cm, pin type substrate is designed by considering the loss due to imputity doping at 1.3 $\mu$m wavelength. The operating voltage and the device length of a reversed ${\Delta}{\beta}$ electro-optic directional coupler(EODC) swith which is a cross-point device of the 4${\times}$4 matrix optical switch and the bending loss of rib waveguide are caculated as functions of waveguide parameters and bending parameters. There is an optimum bending radius for some waveguide parameters. It is recommened that higher optical confinement conditions such as wide waveguide width and higher rib-height should be chosen for structural parameters of a low loss and a process insensitive 4${\times}$4 matris optical switch. A 4${\times}$4 optical matrix switch which has a 3 dB loss and a 12 volt operating voltage is designed.

  • PDF

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

An Experimental Study on Seismic Performance of Reinforced Concrete Bridge Columns under Lateral Cyclic Load (반복 횡하중을 받는 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 이진옥;윤현도;황선경;류효진;나홍성;이경준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.161-164
    • /
    • 2003
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement ($P_s$ =0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/$P_o$). Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/$P_o$) less than 0.2, the ratio of $M_{max}$ over $M_{aci}$, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Seismic Performance of High-Strength Concrete Columns

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Kim Sun-Woo;Han Min-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.41-44
    • /
    • 2004
  • This experimental investigation was conducted to examine the behaviour of eight one-third scale columns made of high-strength concrete (HSC). The columns were subjected to a constant axial load corresponding to 30 per cent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength. Columns with 42 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. Relationships between the calculated damage index and the observed damage such as initial crack, spalling of concrete, buckling of longitudinal bar, and crushing of concrete are propose.

  • PDF

Prediction of the Total Effective Moment (ME) Using Stroke Range in Lightweight Piezoelectric Composite Actuator(LIPCA) (경량압전 복합재료 작동기의 작동범위를 이용한 총유효 모멘트 (ME)의 예측)

  • Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.120-127
    • /
    • 2006
  • The fatigue behavior of LIPCA was so sensitive to the manufacturing condition, the environmental factors and the change of the test apparatus. Therefore, we could be considering not only the relationship between the stroke range $({\Delta}h)$ and actuating frequency but also the relationship between the stroke range $({\Delta}h)$ and the total effective moment $(M^E)$. Thus, this study proposed the calculation method of the applying $M^E$ when the $({\Delta}h)$ of LIPCA was increased from 1.mm to 20mm. To estimate the relationship between the total effective moment $(M^E)$ and the Bernoulli-Euler bending moment (M) was reviewed. And the residual stress distribution of LIPCA and THUNDER using the CLT was evaluated. In conclusions, converting the $({\Delta}h)$ of LIPCA to the radius of curvature (p) and calculating the $(M^E)$, it was found that the p by the $M^E$ changed similarly as the $({\Delta}h)$. It was found that the $M^E$ was 2.2 times as the M. While CFRP and PZT of LIPCA, which had the superior compressive characteristic, had the compressive residual stress, GFRP was subject to the tensile residual stress. Since this reversed configuration between the compressive residuals stress and the tensile one was made, the requirement of the stroke range $({\Delta}h)$ increase was satisfied.

A study on the Bending Fatigue Strength of Die Steels coated with VC(Vanadium Carbide)by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC coating 금형강의 굽힘 피로강도에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.166-177
    • /
    • 1993
  • Bending fatigue strength tests were made for VC coated die steels which were coated by immersing in a molten borax bath and for hardened die steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$ and $1025^{\circ}C$. The material used in this investigation was a representative cold and hot die steels STD11, STD61. The results obtained are as follows. 1) The endurance limit of VC coated die steels was a little lower than that of hardened die steels. It is considered to be mainly due to the decfl.lase of hardness in the substrates. Accordingly, the endurance limit reo covered almost to the level of hardened die steels by an additional diffusion treatment. 2) The initiation point of fatigue fracture of VC coated die steels in reversed bening was on the substrate just under the VC layer. Hence, the endurance limit is corrected to the hardness of this part. 3) But, there is a considerable scatter in this relationship and the endurance limit of VC coated die steels was a little lower than that of hardened die steels with equal hardness. These results suggest that the fatigue strength of VC coated die steels is determined not only by the hardness but also by other factors. For example. the residual stress in the substrate just under VC coating layer is one of the factors besides hardness which is mainly related to the retained austenite(${\gamma}_R$).

  • PDF

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film (이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구)

  • Shin Youn-Hak;Kim Myung-Han;Choi Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

A Study on the Improvement of Adhesion according to the Surface Modification of Cu/Polyimide Films by ion Beam Irradiation (이온빔에 의한 Cu/Polyimide 표면개질에 따른 접착력향상에 관한 연구)

  • Shin Youn-Hak;Chu Jun-Sick;Lee Seoung-Woo;Jung Chan-Hoi;Kim Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.42-46
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer sufaces by ion beam irradiation and rf plasma are commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $Ar^+$ ion beam irradiation pretreatment conditions. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the $90^{\circ}$ peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $Ar^+$ ion beam irradiation energy at the fixed metal-layer thickness.