• Title/Summary/Keyword: Reverse voltage mode

Search Result 44, Processing Time 0.02 seconds

Study on the Effect of the Operation Voltage according to the Reverse Twist for the fringe Field Switching (FFS) Mode (FFS 모드에서 Reverse Twist가 구동전압에 미치는 영향에 관한 연구)

  • Kim, Mi-Sook;Jung, Yeon-Hak;Seen, Seung-Min;Kim, Hyang-Yul;Kim, Seo-Yoon;Lim, Young-Jin;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1033-1037
    • /
    • 2005
  • We have studied on the effect of the operation voltage according to the reverse twist for the different fringe field switching (FFS) structure. The FFS structure with a vertically patterned edge of the pixel electrode (VPP) has lower operation voltage comparing to the one with a horizontally patterned edge of the pixel electrode (HPP). The reason is like that the number of the pattern of the pixel edge for the VPP structure is one third comparing with the HPP structure and thus, there is small reverse twist area for the VPP structure. Actually, the reverse twist disturbs the twist of LC near adjacent active area, result that LCs near there have the unstable dynamics. That is, the operation voltage increases as the reverse twist area increases. Therefore, it is very important to design pixel electrode with a small reverse twist region for the FFS mode.

Expeditious Full Discharging Method without Voltage Rebound Issue for Safe Battery Recycling

  • Ji-Su Woo;Hong-Geun Lee;Geun-Ha Hwang;Keun-Ho Heo;Yu-Chan Hwang;Won-Jin Kwak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-465
    • /
    • 2024
  • To achieve recycling without safety hazards by explosion of spent batteries, an efficient full discharging procedure is required to stabilize the batteries before recycling. However, typical salt solution discharging technique has environmental pollution, inefficiency, and safety issues due to wastewater emission, slow discharging rate, and severe voltage rebound. Electrical discharging techniques can be applied to overcome these problems, but the typical constant-current and constantcurrent constant-voltage modes have a trade-off relationship between discharge time and voltage rebound. In this study, we propose reverse voltage mode as an expeditious and safe electrical discharging protocol that effectively addresses the tradeoff between discharging time and voltage rebound. The proposed reverse voltage mode for full discharging method was proven to be effective regardless of the electrode crystal structure or the battery form factor. This result is expected to present new methodology for pre-stabilization of spent batteries for more eco-friendly and stable recycling.

Algorithm Development for Improving Output Characteristics of Thyristor Dual Converter with AC Input Voltage Variation (교류 입력 전압 변동에 따른 사이리스터 듀얼 컨버터의 출력 특성 개선을 위한 알고리즘 개발)

  • Kim, Sung-An;Han, Sung-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1437-1443
    • /
    • 2017
  • Electric energy is consumed or regenerated according to an operation of electric rail cars in urban railway power substations. A thyristor dual converter system is used to deal with the electric energy. Since the AC input voltage of power substations is $22.9kV{\pm}10%$, the magnitude of the AC voltage fluctuates according to load conditions, so the secondary side voltage of the DDY transformer also fluctuates. In the thyristor dual converter, the response characteristics of the DC output voltage and the DC output current are changed based on an initial firing angle in the cross mode conversion between the forward mode and the reverse mode. Therefore, this paper proposes the initial firing angle tracking algorithm considering fluctuation of the AC input voltage. The effectiveness of the proposed algorithm is verified by a simulation compared with the conventional algorithm.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Study on the Reverse Twist According to the Rubbing Direction for the Fringe-Field Switching (FFS) Mode (FFS 모드에서 러빙 방향에 따른 Reverse Twist 변화에 대한 연구)

  • Kim Mi Sook;Seen Seung Min;Jung Yeon Hak;Kim Hyang Yul;Kim Seo Yoon;Lee Seung Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.185-188
    • /
    • 2006
  • We studied on the reverse twist near the pixel edge depending on the rubbing direction for the fringe field switching (FFS) mode. Liquid crystal (LC) dynamic and the transmittance near the pixel edge, where the various field directions are generated, depend on the initial rubbing direction because the position of reverse twist is decided by the angle between the electric direction and the LC director at a bias voltage. For example, when the rubbing angle is $7^{\circ}$, the reverse twist appears on the bottom position of the right sharp comer of the pixel edge so that the reverse region exists far away from main active region. But, when the rubbing angle is $-7^{\circ}$, the reverse twist appears on the top position of the right sharp comer of the pixel edge, resulting that the region becomes more close to the main active area and the unstable disclination lines (DLs) easily intrude into the active region. Therefore, it is necessary to keep the reverse twist region far from the active region and it is possible by controlling the rubbing direction in the design of a pixel electrode.

Operational Mode Analysis of Cooler Driver Electronics in Satellite and System Safety Margin

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.79-84
    • /
    • 2020
  • Cooler driver electronics (CDE) for maintaining low temperature of the satellite payload IR sensor consists of a compressor that has a pulsation current load condition when it is operated. This pulsation current produces large voltage fluctuation, which affects both load and regulated bus stability. Thus, CDE power conditioning system consists of a primary bus, infrared power distribution unit for battery charging and protection, reverse current protection diode, and battery, which is used as a buffer. In this study, the operational mode analysis is performed by each part with equivalent impedance modeling verified through system level simulation. From this mode analysis, the safety margin for state of charge and open circuit voltage of the battery is determined for satisfying the minimum operational voltage of the CDE load.

Analysis and Control of A Fixed Frequency LCL-type Isolated Bidirectional Converter (고정주파수 LCL타입 절연형 양방향 컨버터 해석 및 제어)

  • Park, Sangeun;Cha, Hanju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • This paper discussed the LCL-type & Isolated bidirectional dc-dc converter(BDC) with dual full bridge inverter. In order to verify the analysis of the BDC, Experimental prototype has been designed and implemented to supply constant voltage regardless of loads and proposed a method to select switching frequency that depended on two inductors' inductance ratio and transformer parameters. The proposed converter has been composed of LCL resonant network with unit inductance ratio ($L_r/L_f$=1) and then operated with fixed duty, 50% duty ratio and fixed frequency. There are some characteristics that input voltage and output voltage of the BDC is nearly identical and zero voltage turn-on switching is possible in forward and reverse mode. Finally, it has been showed that BDC is possible to commutate operating mode normally and provide constant output voltage in selected switching frequency.

A Study on the Firing Angle at the Mode Conversion to Improve the Output Characteristics of the Double Converter for Urban Railway DC Power Supply (도시철도 직류급전용 더블컨버터의 출력특성 향상을 위한 모드 변환 시 점호각 제어 연구)

  • Seo, Seung-Sam;Han, Sung-Woo;Byun, Gi-Sig
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • This paper suggest away to maintain constant power through trolley wire by transferring increased line voltage to the AC main line while changing the mode from Converter(Forward) to Inverter(Reverse) when the line voltage is increased due to regenerative power when the train stops, This paper suggests a Double Converter DC substation that can create regenerative power when the train stops reusable. We also proposed using a simulation tool, the optimal Thyrister firing angle that can minimize the undershoot and overshoot that occurs when transferring the mode from Converter to Inverter for quality improvement of DC voltage in the Double Converter in the DC substation from the Busan Urban Subway.

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.