• Title/Summary/Keyword: Reverse Osmosis (RO) Process

Search Result 120, Processing Time 0.02 seconds

Alkali Recovery by Electrodialysis Process: A Review (전기투석 공정에 의한 알칼리 회수: 총설)

  • Sarsenbek Assel;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

PPTA/PVDF blend membrane integrated process for treatment of spunlace nonwoven wastewater

  • Li, Hongbin;Shi, Wenying;Qin, Longwei;Zhu, Hongying;Du, Qiyun;Su, Yuheng;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • Hydrophilic and high modulus PPTA molecules were incorporated into PVDF matrix via the in situ polymerization of PPD and TPC in PVDF solution. PPTA/PVDF/NWF blend membrane was prepared through the immersion precipitation phase inversion method and nonwoven coating technique. The membrane integrated technology including PPTA/PVDF/NWF blend membrane and reverse osmosis (RO) membrane was employed to treat the polyester/viscose spunlace nonwoven process wastewater. During the consecutive running of six months, the effects of membrane integrated technology on the COD, ammonia nitrogen, suspended substance and pH value of water were studied. The results showed that the removal rate of COD, ammonia nitrogen and suspended substance filtered by PPTA/PVDF blend membrane was kept above 90%. The pH value of the permeate water was about 7.1 and the relative water flux of blend membrane remained above 90%. After the deep treatment of RO membrane, the permeate water quality can meet the water circulation requirement of spunlace process.

Cost Reduction for Small-Scale Desalination Plants (소규모 해수담수화 시설의 생산비용 절감 방안)

  • Park, Nam-Sik;Park, Jun-Yeong;Mun, Yu-Ri;Kim, Ja-Kyum
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.809-817
    • /
    • 2011
  • We analyzed various cost components for approximately 40 small-scale island desalination plants operated by K-water. A significant factor affecting desalination cost was found, and we proposed a way to reduce desalination costs. All plants considered were reverse osmosis (RO) facilities. TDS concentrations of feed water varied from less than 1,000 mg/L (practically considered freshwater) to over 30,000 mg/L (nearly seawater). Analysis of desalination costs from 2005 to 2009 indicated that maintenance, labor, and energy were the three biggest components that accounted for 50.6%, 36.9% and 7.8%, respectively. It was well known that TDS of feed water directly affected energy needed for RO process. In this study we found that maintenance cost was also directly related to feed water TDS. This finding indicated that lowering feed water TDS might result in significant desalination cost reduction.

Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms (경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구)

  • Ham, Sangwoo;Kim, Youngjin;Kim, Chunghwan;Shon, Hokyong;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process (역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성)

  • Jung, Ji-Yeon;Lee, Jin-Wook;Kim, Sung-Youn;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.

Study on the Membrane Cleaning-in-place (CIP) Conditions for the Dye Wastewater Treatment Process Using Polyamide Composite Membranes (폴리아마이드계 복합막을 이용한 염료 폐수 처리 공정 분리막 세척 조건 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Hwang, Jeong-Eun;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • For the treatment of the dye wastewater, a polyamide nano-composite membrane and reverse osmosis (RO) membranes were prepared using interfacial polymerization technique, in which piperazine, meta-phenylene diamine, and trimesoyl chloride were used as monomers, Their permselective properties were characterized with aqueous solutions of PEG 600, $Na_2SO_4$, and NaCl, and their performance was compared with that of Osmonics Co, They were found to be a typical nano-composite membrane and a low pressure RO membrane. Using them, a real dye wastewater supplied from the Kyungin Corporation, one of the domestic dye producer, was treated, studying the separation performances of the membranes, Also, during the wastewater treatment, cleaning in place (CIP) of the membranes was carried out regularly to recover the flux of the membranes. Three different chemical cleaners were employed for the CIP process and their performance were compared in this study.

Evaluation of Electric Power Consumption during Seawater Desalination (해수담수 공정의 전력비 평가기준에 관한 연구)

  • Shim, Kyu Dae;Kim, Chang Ryong;Choung, Joon Yeon;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.485-492
    • /
    • 2021
  • This study focused on safety aspects surrounding energy consumption in the seawater desalination process in the Daesan Industrial Complex located on the West Sea coast. The safety index for energy consumption was evaluated under different salinities and temperatures of the incoming seawater. Temperature and salinity input data for the 1997-2018 period were obtained from the Marine Environment Information System, and the power required for reverse osmosis (RO) was applied to the program as per the data provided by the RO membrane manufacturer (Q-Plus v3.0). Notably, reasonable energy consumption guidelines were proposed during the design of the desalination facilities; in this regard, the desalination process required approximately 2.10-2.90 kWh/m3 electrical power. Moreover, the energy safety based on 95 % was estimated to be 2.80 kWh/m3 when the desalination facility was operated.

A Study of the Optimization Process Combination on the Ultrapure Water Treatment System (초순수 생산을 위한 최적공정 조합 평가)

  • Lee, Kyung Hyuk;Kim, Dong Gyu;Kwon, Boung Su;Jung, Kwan Sue
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.364-370
    • /
    • 2016
  • In this paper, the technique that determines efficient process combinations for the ultrapure water production was studied. The ultrapure water is one of the industrial water used in industrial activity and required in the advanced technology integrated industry. It is produced by combined process including filtration, ion exchange processes, the reverse osmosis (RO) process, degassing (DG) process and UV-oxidation (UVox) process. An ultrapure water production process consists of 15-20 different water treatment unit process. In this study, a pilot plant was built and operated to research the design parameters for the individual process. Through the pilot plant operation, 19 effective combinations were optimized among various processes. And then, 11 of them satisfied the final quality of the ultrapure water. The stability and economic feasibility were evaluated about the final 11 process combinations.

Study of MF membrane as pretreatment option using various backwash process from wastewater reuse pilot plant (전처리 MF의 다양한 역세 공정을 적용한 하수재이용 파일럿 플랜트 연구)

  • Park, Kwang-Duck;Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-Oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.335-341
    • /
    • 2016
  • Various studies have forwarded an outstanding wastewater effluent treatment systems toward securing sustainable supply of water sources. In this paper, a broad overview of the performance of MF membrane as pretreatment option for wastewater reuse will be presented based on the literature survey and experiments conducted over the wastewater reuse pilot plant. The pilot plant was operated with a continuous data acquisition for about 300days under various chemical enhanced backwash (CEB) system with subsequent treated water quality analysis. Accordingly, assessment of the effluent revealed that the pretreated water is suitable enough to be used as an input for Reverse Osmosis (RO) unit and significant effect of CEB and concentration of NaOCl is also conceived from the analysis. Moreover, it's also observed that the application of various CEB condition over long operational hours induced a constant declination of overall performance of MF membrane.