• Title/Summary/Keyword: Reverse Osmosis (RO)

Search Result 230, Processing Time 0.025 seconds

Effect of Pretreated Seawater Quality on SDI in SWRO Desalination Process (SWRO 해수담수화 공정에서 전처리된 수질조건이 SDI에 미치는 영향)

  • Son, Dong-Min;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • Pretreatment process is the critical step of RO (Reverse Osmosis) membrane desalination plant in order to prevent RO membrane fouling. The pretreatment as a key component of RO process must be designed to produce a constant and high quality RO feedwater which has low silt density index (SDI). This experiment was conducted to assess parameters affecting SDI value, such as pH, seawater turbidity, temperature, and coagulant dose. The experimental results indicated that the source seawater turbidity did cause little effects on SDI values of filtered water. The 0.45 um hydrophilic membrane was more appropriate than the hydrophobic membrane for measuring SDI. The SDI value was increased with decreasing pH under the condition of below pH 7.0. In addition, the water temperature significantly affected the SDI values, showing higher SDI value with lower water temperature.

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L.;Chivas, Allan R.;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.141-160
    • /
    • 2015
  • This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.

Evaluation on Chemical Cleaning Efficiency of Organic-fouled SWRO Membrane in Seawater Desalination Process (해수담수화 공정에서 역삼투막의 유기 막오염에 대한 SWRO 막의 화학세정 효율 평가)

  • Park, Jun-Young;Hong, Sung-Ho;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon in operation of seawater reverse osmosis (SWRO) and major obstacle for economic and efficient operation. When fouling occurs on the membrane surface, the permeate flux is decreased, on the contrary, the trans-membrane pressure (TMP) is increased, therefore operation and maintaining costs and potential damage of membranes are able to the pivotal risks of the process. Chemical cleaning process is essential to prevent interruptions for effective RO membrane filtration process. This study focused on proper chemical cleaning condition for polyamide RO membranes of 4 companies. Several chemical agents were applied for chemical cleaning under numbers of operating conditions. Additionally, a monitoring tool of FEEM as autopsy analysis method is adapted for the prediction of organic bio-fouling.

Separation of Zinc Ion from Metal Plating Wastewaters by Reverse Osmosis Membrane (Membrane을 이용한 도금폐수 중 아연이온의 분리에 관한 연구)

  • 장자순;이효숙;정헌생;이원권
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 1994
  • The ultrafiltration(UF) and reverse osmosis(RO) tests for a model metal plating wastewater prepared with zinc sulfate, showed the zinc ion rejection coefficient of over 99% and the permeate flux of $1.49 {\times} 10^{-3}cm/sec$ at pH = 8.3. The effect of cyanide on the zinc removal was investigated. When the amount of cyanide addition was same the zinc content, the zinc was removed over 99% and the cyanide was excluded about 93%. The addition of the surfactants such a LAS-Na and EDTA-Na was found to reduce the permeate flux down to $0.76 {\times} 10^{-3}cm/sec$ at the RO membrane.

  • PDF

Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

  • Jeong, Dawoon;Lee, Chang-Ha;Lee, Seockheon;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.395-404
    • /
    • 2019
  • The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with $0.2mg-Cl_2/L$ chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg $Cl_2/L$). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.

Analysis of ultra-low radionuclide concentrations in water samples with baromembrane method

  • Vasyanovich, Maxim;Ekidin, Aleksey;Trapeznikov, Alexander;Plataev, Anatoly
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.253-257
    • /
    • 2021
  • This work demonstrates the use of baromembrane method based on reverse osmosis (RO) process. The method is realized on mobile complex, which allows to concentrate and determine ultra-low activity of radionuclides in water cooling ponds of Russian nuclear fuel cycle enterprises. The existence level of radionuclide background creates difficult conditions for identification the contribution of liquid discharges enterprise, as standard monitoring methods have a very high detection level for radionuclides. Traditional methods for determining the background radionuclides concentrations require the selection of at least 500 liters (l) of water, followed by their evaporation to form a dry residue. This procedure with RO membranes requires at least 5 days. It is possible to reduce the time and energy spent on evaporation of hundreds of water liters by pre-concentrating radionuclides in a smaller sample volume with baromembrane method. This approach allows preliminary concentration of water samples from 500 l volume till 20 l volume during several hours. This approach is universal for the concentration of dissolved salts of any heavy metals, other organic compounds and allows the preparation of water countable samples in much shorter time compared to the traditional evaporation method.

Removal of Silica and Humic Acid from Brackish Water with Calcite (Calcite를 이용한 brackish water 내의 실리카와 휴믹산의 제거에 관한 연구)

  • 박소희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.243-245
    • /
    • 2002
  • Brackish water desalination using reverse osmosis(RO) membrane is more useful and economic than sea water to solve the shortage of fresh water supply because of its low total dissolved solid(TDS) contents. Silica and humic acid in brackish water make serious fouling problems and cause the decline of permeate flux and increase of operating pressure. In this study, the experiments for removal of silica and humic acid were conducted with calcite particles to prevent membrane fouling and investigated the effect of pH of feed water Adsorption of silica to calcite was higher at pH=7.5 than 9.5 and removal rate was increased according to increase of initial concentration of silica. The effect of pH on adsorption of humic acid was not significant but at low initial concentration the adsorption of humic acid was enhanced at pH 7.5. The result of this study expect to apply to brackish water desalination experiment of flat-sheet reverse osmosis membrane.

  • PDF

Membrane Roles in Potable Water Treatment (먹는물에서 분리막의 역할)

  • Maeda, Yasushi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.09a
    • /
    • pp.121-145
    • /
    • 1996
  • Due to more stringent regulations in drinking water, membrane separation has been playing an increasingly important role. Seawater desalination by reverse osmosis is a typical example and has been used world-wide. Although the existing technology based on coagulation and media filtration is well established and reliable technology, with the advance of industrial and agricultural activities it is difficult for this technology to remove contaminants such as nitrate and synthetic organic chemicals. To meet the drinking water standards and produce higher quality water, several membrane filtration research programs have been initiated which include Japanese MAC21 and New MAC21 projects. In this paper, potable water application of reverse osmosis (RO) and nanofiltration(NF) and their case histories will be explained in more detail.

  • PDF

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

Development of Hybrid Membrane composed of Organic and Inorganic Polymers for the Desalination of Deep Ocean Water (I) (해양심층수담수화를 위한 유무기계 분리막 개발(1))

  • Kim H.J.;Jung D.H.;Hong Y.K.;Song K.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • Desalination system of revers osmosis(RO) membrane has been proven to be the most economical not only for the desalination of water containing salts, but also for the concentration of solute. RO membranes were traditionally made of inorganic polymers such. as cellulose acetate(CA), Polyamide(PA). To retain more minerals in deep ocean water, a new hybrid membrane composed of tourmaline film as organic material onto inorganic layer of CA polymer in asymmetric structure was developed for RO membrane process. The performance tests were carried out in the permeability of pure water and the rejection of NaCl solution to evaluate the adaptability for DOW desalination. The results of these basic tests show possibility to apply the new hybrid RO membrane for the desalination with function control.

  • PDF