• 제목/요약/키워드: Reused

검색결과 720건 처리시간 0.028초

지르코니아 강화형 Glass-Ceramic의 기계적 성질 (Mechanical Properties of Zirconia Reinforced Glass-Ceramic)

  • 박은의;동진근;이해형;송기창;오상천
    • 구강회복응용과학지
    • /
    • 제17권3호
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF

미국 내 LEED 그린빌딩의 지속가능한 업무공간 사례 연구 - 실내 평가요소 중 재료 및 자원을 중심으로 - (Case Study on Sustainable office space of the LEED Green Building in the United States - Focused on the Materials and Resources of Indoor Evaluation Factors -)

  • 하숙녕;한영호
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.176-185
    • /
    • 2013
  • (Background)In modern industrial society, the design industry failed to observe the law of nature, destructing it. Regardless its intention, the design industry destructed the environment so that it can't maintain the future life because of waste and disaster. For the purpose, it is important to adopt the technology to reuse the waste resource generated by building or minimize the damage to environment for the resource that can't be recycled. (Methods)On the assumption that the material and resource can be an alternative plan for the design that can make environment be sustained, the study analyzed materials and resources out of superior office space of USA, which were selected by LEED Green Building Rating System. (Results)The analysis result revealed that all cases reused main structural part of existing building and indoor and various materials were reused or recycled. Especially, the materials without or with low amount of VOCs and formaldehyde were used. In order to reduce construction waste, the finish of existing building was exposed as it was, 50% of reused materials were used or disassemblable materials were used. When regional materials are used, there is an advantage to reduce transportation cost and recycle the materials rapidly. Lastly, the environment-friendly certified by FSC was used in all cases. (Conclusion)After all, the material is one of the space design strategies sensitive to environment so it is important to select good material. Harmless, environment-friendly materials applied to sustainable office space contribute to the creation of healthy environment. In addition, the use of recycled materials and reused materials to minimize waste is also essential factor for creating sustainable space.

TiO2/UV-A 시스템을 이용한 Cu(II)-EDTA의 광촉매 산화반응에서 TiO2 재사용 및 회수 (TiO2 Reuse and Recovery from the Photocatalytic Oxidation of Cu(II)-EDTA using TiO2/UV-A System)

  • 이승목
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.84-91
    • /
    • 2005
  • $TiO_2-catalyst$ suspensions work efficiently in Photocatalytic oxidation (PCO) for wastewater treatment. Nevertheless, once photocatalysis is completed, separation of the catalyst from solution becomes the main problem. The PCO of Cu(II)-EDTA was studied to determine the reusability of the titanium dioxide catalyst. Aqueous solutions of $10^{-4}M$ Cu(II)-EDTA were treated using illuminated $TiO_2$ particles at pH 6 in a circulating reactor. $TiO_2$ was reused in PCO system for treatment of Cu(II)-EDTA comparing two procedures: reuse of water and $TiO_2$ and reuse of the entire suspension after PCO of Cu(II)-EDTA. The results are as follows; (i) Photocatalytic efficiency worsens with successive runs when catalyst and water are reused without separation and filtration, whereas, when $TiO_2$ is separated from water, the reused $TiO_2$ is not deactivated. (ii) The $TiO_2$ mean recovery (%) with reused $TiO_2$ was 86.4%(1.73g/L). Although the mean initial degradation rate of Cu(II)-EDTA and Cu(II) was lower than that using fresh $TiO_2$, there was no significant change in the rate during the course of the three-trial experiment. It is suggested that Cu(II)-EDTA could be effectively treated using an recycling procedure of PCO and catalyst recovery. (iii) However, without $TiO_2$ separation, the loss of efficiency of the PCO in the use of water and $TiO_2$ due to Cu(II), DOC remained from previous degradation and Cu(II)-EDTA added to the same suspension was observed after 2 trials, and resulted in the inhibition of the Cu(II)-EDTA, Cu(II) and DOC destruction.

치과 도재용 금속의 재사용에 따른 금속과 도재간의 결합 강도에 관한 연구 (A STUDY ON THE BOND STRENGTH BETWEEN REUSED DENTAL ALLOYS AND PORCELAIN)

  • 김인;양홍서
    • 대한치과보철학회지
    • /
    • 제31권2호
    • /
    • pp.181-190
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of shear bond strength between various percentage of reused dental ceramic alloys and porcelain. One hundred specimens were made of one semiprecious alloy and three nonprecious alloys. Each alloy group was subdevided into five groups according to the additional precentage of new alloy. Group I specimens were made of 100% new alloy and served as the control of the investigation. Group II specimens were made of once-cast alloy with 75% new alloy. Group III specimens were made of once-cast alloy with 50% new alloy. Group IV specimens were made of once-cast alloy with 25% new alloy. Group V specimens were made of 100% recast alloy. Five specimens were made for each group of the alloy combinations. The test specimens were prepared by firing porcelain doughnuts on the alloy rod surface, and invested in dental stone. Bond strengths were measured by Instron universal testing machine at a crosshead speed of 0.5mm/min. The fractured surface of metal specimens were examined under the scanning electron microscope. The obtained results were as follows : 1. The shear bond strength of Albabond showed no significant difference between control group and reused alloy group. 2. The shear bond strength of reused alloy groups of nonprecious alloys were lower than that of control groups. 3. The shear bond strength between porcelain and metal in semiprecious alloy was higher than in nonprecious alloys 4. In nonprecious alloys. Rexillium III showed the highest bond strength value and Excelalloy showed the lowest shear bond strength value. 5. Regardless of the type of alloys and additional proportion of new alloys, scanning electron microscope photographs of the fracture surface between alloy and porcelain revealed simillar semiprecious alloy and nonprecious alloys.

  • PDF

A Class-C Type Wideband Current-Reused VCO With Two-Step Automatic Amplitude Calibration Loop

  • Choi, Jin-Wook;Choi, Seung-Won;Kim, InSeong;Lee, DongSoo;Park, HyungGu;Pu, YoungGun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.470-475
    • /
    • 2015
  • This paper presents a wideband Current-Reused Voltage Controlled Oscillator (VCO) with 2-Step Automatic Amplitude Calibration (AAC). Tuning range of the proposed VCO is from 1.95 GHz to 3.15 GHz. The mismatch of differential voltage is within 0.6 %. At 2.423 GHz, the phase noise is -116.3 dBc/Hz at the 1 MHz offset frequency with the current consumption of 2.6 mA. The VCO is implemented $0.13{\mu}m$ CMOS technology. The layout size is $720{\times}580{\mu}m^2$.

발효용기로서 새 옹기와 재사용 옹기가 고추장 품질에 미치는 영향 (Effect of New and Reused Onggis on the Quality of Gochujang as Fermentation Container)

  • 정순경
    • 한국포장학회지
    • /
    • 제15권2호
    • /
    • pp.55-60
    • /
    • 2009
  • 20 L 들이 부피의 발효용기에서 고추장을 발효하면서 여러 가지 성분들을 분석하였고 4개월 발효후의 고추장의 관능적 품질을 평가하였다. 발효용기로는 새 옹기와 한번 사용한 옹기, 스테인레스, 플라스틱 용기를 사용하였고 발효 숙성은 외기조건에서 이루어졌다. 옹기가 가지는 통기성으로 인하여 발효 중 관여하는 미생물의 생육환경을 적절하게 조성하여 여러 가지 품질에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 특히 옹기는 새 것보다는 한번 사용한 옹기에서 제품의 발효에 좋은 영향을 미쳐서, 높은 아미노태 질소, 유리아미노산함량, 적은 환원당 함량, 향, 맛 전체적인 수용도의 관능적 품질을 보여주었다.

  • PDF

시스템 다이내믹스를 이용한 하수재이용 유역의 일유출량 모의 (Modeling Daily Streamflow in Wastewater Reused Watersheds Using System Dynamics)

  • 정한석;성충현;박승우
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.45-53
    • /
    • 2014
  • This study presents a system dynamics modeling approach to simulate daily streamflow in a watershed including wastewater treatment plant which contributes to irrigation water supply. The conceptual system dynamics model considering the complex and dynamic hydrological processes in the watershed was developed. The model was calibrated and validated each for two years based on observed flow data. Model performances in terms of $E_{NS}$, RSR, PBIAS, and $R^2$ were 0.64, 0.60, -3.6 %, and 0.64 for calibration period, and 0.66, 0.58, -2.6 %, and 0.66 for validation period, respectively, showing an applicability on generating the daily streamflow. System dynamics modeling approach could help better understand the hydrological behavior of the watershed being reused wastewater for agriculture, by providing graphical dynamics of the hydrological processes as well as conventional rainfall-runoff model results.

실리카 연마제가 첨가된 재활용 슬러리를 사용한 2단계 CMP 특성 (Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry by Adding of Silica Abrasives)

  • 서용진;이경진;최운식;김상용;박진성;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.759-764
    • /
    • 2003
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of roused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity (WIWNU) wore measured as a function of different slurry composition. As an experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows , In tile first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saying of high costs of slurry.

승용차(乘用車) 재활용(再活用) 범퍼의 충격흡수(衝擊吸收) 성능(性能)에 관(關)한 연구(硏究) (A study on Shock Absorption Performance of Reused Bumper for Passenger Cars)

  • 김지원;이창식
    • 자원리싸이클링
    • /
    • 제18권1호
    • /
    • pp.44-51
    • /
    • 2009
  • 이 연구는 신개발 범퍼의 충격흡수성능 시험기준을 적용하여 재활용 범퍼의 충격흡수성능을 실험하고, 재활용 범퍼의 성능 특성을 비교한 것이다. 본 연구에서 적용된 범퍼는 유형이 다른 두 종류의 승용차 외장 범퍼를 선정하여 2종류의 재활용 범퍼를 자동차 안전 기준에 따라 충격흡수성능을 시험하였다. 재활용 범퍼의 충격 흡수성능 실험 결과 2.5마일 범퍼 충격 성능 특성은 동일한 차종의 신품 범퍼의 충격 성능 및 흡수 성능 특성과 거의 동등수준의 충격 성능 특성을 나타내었다.

펜톤산화에 의한 바이오매스 분해향상과 펜톤산화 용액 재사용 평가 (Improvement of Biomass Degradation by Fenton Oxidation and Reusability of the Fenton Oxidation Solution)

  • 정소연;이재원
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, the reusability of the Fenton oxidation solution was evaluated to reduce the cost of the pretreatment process. Biomass was sequential subjected to Fenton oxidation-hydrothermal treatment and enzymatic hydrolysis to produce monosaccharides. The liquid solution recovered after Fenton oxidation contained OH radicals with a concentration of 0.11 mol/L. This liquid solution was reused for a new Fenton oxidation reaction. After Fenton oxidation, hydrothermal treatment was performed under the same conditions as before, and 9.34-13.63 g/L of xylose was detected. This concentration was slightly lower than that of a fresh Fenton oxidation solution (16.51 g/L) but was higher than that obtained by hydrothermal treatment without Fenton oxidation (2.72 g/L). The degradation rate during hydrothermal pretreatment involving Fenton oxidation was 36.02%, which decreased (29.24-31.05%) slightly when the liquid solution recovered after Fenton oxidation was reused. However, the degradation rate increased compared to that measured from hydrothermal treatment without Fenton oxidation (15.21%). Moreover, the yield after enzyme hydrolysis decreased in the following order: fresh Fenton oxidation-hydrothermal treatment (89.64%) > Fenton oxidation with reused solution-hydrothermal treatment (74.84%) > hydrothermal treatment without Fenton oxidation (32.05%).