• Title/Summary/Keyword: Reuse of adsorbent

Search Result 17, Processing Time 0.036 seconds

Reclaiming property of magnetic adsorbent for oil spill recovery and pollution control (환경오염방지 유출모일 회수용 자기흡착제의 재생회복 특성)

  • Soh, Deawha;George, Ksandopulo;Lim, Byongjae;Nina, Mofa;Tiek, Ketegenov
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-299
    • /
    • 2001
  • Data on the oil spill recovery from the water surface by light floating electromagnetic plants using a new magnetic adsorbent are given. The feasibility scope for further oil recovery from such gathered mixtures(oil+adsorbent), reuse of this magnetic adsorbent and its properly reclaiming and recycling were shown. The basic conception of the oil spill recovery and efficiency of this method were set forth.

  • PDF

Reclaiming property of magnetic adsorbent for oil spill recovery and pollution control (환경오염방지 유출오일 회수용 자기흡착제의 재생회복 특성)

  • Soh, Dea-Wha;George, Ksandopulo;Lim, Byong-Jae;Nina, Mofa;Tlek, Ketegenov
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.296-299
    • /
    • 2001
  • Data on the oil spill recovery from the water surface by light floating electromagnetic plants using a new magnetic adsorbent are given. The feasibility scope for further oil recovery from such gathered mixtures(oil + adsorbent), reuse of this magnetic adsorbent and its property reclaiming and recycling were shown. The basic conception of the oil spill recovery and efficiency of this method were set forth.

  • PDF

Odor Removal with Powdered Adsorbent using Bag-filter System (분말 흡착제를 이용한 악취 저감 여과 집진장치 개발연구)

  • Xu, Rong-bin;Kim, Tae-Hyeung;Ha, Hyun-Chul;Piao, Cheng-Xu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.291-301
    • /
    • 2017
  • Objectives: In order to improve the working environment and solve the complaints, many efforts have been made to remove the odor from the industrial process. There are many disposal methods to remove odor, but there are many disadvantages and inadequate applications. The Purpose of this study was to develop a bag-filer system for odor removal using powder adsorbent. Methods: The bag-filter system is composed of a shear bag filter, an absorbent spraying system and an absorbent circulation system. The spraying absorbent system was connected with the inlet duct of the shear bag filter for inputting adsorbent. And the absorbent circulation system can transport the collecting adsorbent from hoper to the inlet duct of the system. As a result, the adsorbent can remove odor with recycling in the system. Also affective factors like the powdered absorbent combination and injection method was researched for maximization of system efficiency. The study was conducted in two stages. The first step was testing equipment made and the second is to evaluate the efficiency of the odor control by connecting to the actual odor generation process. Results: Both experiment stages showed efficient odor control ability. The adsorption efficiency of the system is demonstrated and the odor was adsorbed well by the powder adsorbent. It is essential to accurately understand the characteristics of the odorous and use the appropriate adsorbent. Although the powder adsorbent was used in the experiment, the problem of scattering did not occur due to the high degree of system sealing. Also the system manufactured in this study was designed to recycle the adsorbent, so adsorbent reuse or batch processing is convenient. Conclusions: The applicability of the system has been proven through this research. Customized systems for industrial process and the appropriate adsorbent base on the characteristics of pollutant generation will show efficient odor collection ability.

Removal of Pb(II) from Aqueous Solution Using Hybrid Adsorbent of Sericite and Spent Coffee Grounds (견운모와 커피찌꺼기 복합 흡착제를 이용한 수용액의 Pb(II) 제거)

  • Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.571-580
    • /
    • 2018
  • In this study, hybrid adsorbents (SS) were prepared by mixing spent coffee grounds (SCG) and sericite, a kind of clay minerals, to adsorb Pb(II) from an aqueous solution. In FT-IR analyses, the main functional groups of SS adsorbents were O-H, C=O and C-N groups. The specific surface area, cation exchange capacity and the pore diameter of SS were larger than those of using SCG and sericite. Formation conditions of the SS adsorbent were the optimum pyrolysis temperature of $300^{\circ}C$, SCG : sericite ratio of 8 : 2, and particle size of 0.3 mm. Langmuir adsorption isotherm was more suitable than Freundlich one, and the maximum adsorption capacity was reached 44.42 mg/g. As a result of the adsorption thermodynamic analysis, the adsorption of Pb(II) onto SS was the physical adsorption and exothermic process in nature. The regeneration of SS adsorbent using distilled water showed 88~92% recovery and the active site of SS adsorbent decreased with increasing the reuse cycle time. As a result, SS adsorbent showed that it can be used to remove Pb(II) easily, inexpensively and efficiently without any pre-treatment from aqueous solutions.

Reuse of Rice-Hull and Application Technology Development in Waste Water Treatment (왕겨의 재활용 및 하수처리 활용기술 개발)

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • Activated Rice-Hull carbon was developed to remove ammonia compounds in water matrix. Isotherm adsorption tests of ammonia were conducted using a bottle-point technique and column test. Residual ammonia after Jar-Test or passing through the column was determined by Indophenol method, and assessed the removal efficiency for ammonia of the adsorbent. As a result, the adsorption capacity for ammonia of activated racehull carbon was very larger than that of coconut shell carbon, because the rice hull carbon had the higher BET surface area of silicate. The activated racehull carbon is under the development as adsorbent to remove ammonia in drinking water and waste water.

  • PDF

Adsorption Characteristics of Benzene by Carbonized Cast (탄화분변토를 이용한 Benzene의 흡착특성)

  • 김재홍;손희정;김미룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 1999
  • This study was carried out view that reuse of sludge of adsorbent for benzene in carbonized cast compare with activated carbon. Not only the carbonized cast is good than carbonized carbon in cation exchange capacity and 12 adsorption capacity, but also benzene adsorption capacity is no differences compare to activated carbon. As results, benzene adsorption capacity of carbonized cast and activated carbon are decreased as temperature increase($25~70^{\circ}C$).It is compatible in Lamgmuir model. Therefore, carbonized cast is applied general adsorbent. From experimental results and data regression, in model concerning effect of temperature, relative errors between the experimental data and those calculated by the model are within the range of 1.2~7.8%. In relative humidity effect (RH 0.25~0.50) of benzene adsorption, modified Freundlich model : $QB_{enzene}{;\}QB_{enzene},{\}_{RH=0}=1-kRH^{IN}$, relative errors between the experimental data and those calculated by the model are within are range of 0.5-5.1%. The constants k and l/n in equation were found to be 1.25, 1.89 in carbonized cast.

  • PDF

Adsorption of Heavy Metal Ions by Synthesized Zeolite 4A using Bituminous Coal Fly Ash (유연탄 비산회로부터 합성한 제올라이트 4A에 의한 중금속 이온의 흡착)

  • 김상호;연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 1999
  • A study on the zeolite synthesized of bituminous coal fly ash from power plant has been carried out to reuse industrial waste. The synthesized zeolite was proved to be 4A type by means of the X-ray diffraction analysis and the degree of crystallinity was found to be higher than 90%. Then the synthesized zeolite was used as an adsorbent to remove the heavy metal ions in the CU, Pb, and Cd containing wastewater and water. Also, adsorption characteristics and kinetics of synthesized zeolite in the each metal ion solutions were studied. In each ion solutions, the adsorbed amounts of Pb, Cd, and Cu to the unit weight of synthesized zeolite were 141.6, 118.8, and 131.4mg/g respectively when each metal ion concentration was 500mg/L solution. The adsorption kinetics was fitted well to the Freundlich isotherms. The value of l/n for Pb, Cd, and Cu and 0.27, 0.50, and 0.66, respectively. Those results showed that the synthesized zeolite could be used as an adsorbent to remove single heavy metal ions in the wastewater and water. The heats of adsorption, H values of Pb, Cd, and Cu were 4.87, 14.95, and 18.23kacl/mol by the Henry-van't Hoff equation.

  • PDF

Eosin Biosorption from Aqueous Solution on Two Types of Activated Sludge

  • Cherifa, Farsi;Hakima, Cherifi;Radhia, Yous;Salah, Hanini;Razika, Khalladi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.80-85
    • /
    • 2022
  • In wastewater treatment processes huge quantities of sludge are produced continuously each year. This work investigated the reuse of two types of sludge as biosorbents of a toxic dye. The potential of granular and filamentous fungus dried sludge for the elimination of eosin from aqueous solution was studied in batch system. The effect of initial concentration and temperature was examined. Maximum uptake was observed at 100 mg l-1 and 30 ℃. The maximum removal rate was 92% for the granular sludge and 90% for the filamentous one. Equilibrium was attained after 30 min for the studied dye concentrations. The equilibrium uptake increased with the initial eosin concentration. The Freundlich and Langmuir adsorption models were also investigated. The reuse of disposed sludge as adsorbent could be a solution for the valorization of such dangerous waste to resolve two environmental problems at the same time.

A comparative study on defluoridation capabilities of biosorbents: Isotherm, kinetics, thermodynamics, cost estimation and regeneration study

  • Yihunu, Endashaw Workie;Yu, Haiyan;Junhe, Wen;Kai, Zhang;Teffera, Zebene Lakew;Weldegebrial, Brhane;Limin, Ma
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.384-392
    • /
    • 2020
  • The presence of high fluoride concentration (> 1.5 mg/L) in water causes serious health problems such as fluorosis, infertility, brain damage, etc., which are endemic to many places in the world. This study has investigated the fluoride removal capacity of the novel activated biochar (BTS) and hydrochar (HTS) using Teff (Eragrostis tef) straw as a precursor. Activated biochar with mesoporous structures and large specific surface area of 627.7 ㎡/g were prepared via pyrolysis process. Low-cost carbonaceous hydrochar were also synthesized by an acid assisted hydrothermal carbonization process. Results obtained from both adsorbents show that the best local maximum fluoride removal was achieved at pH 2, contact time 120 min and agitation speed 200 rpm. The thermodynamic studies proved that the adsorption process was spontaneous and exothermic in nature. Both adsorbents equilibrium data fitted to Langmuir isotherm. However, Freundlich isotherm fitted best for BTS. The maximum fluoride loading capacity of BTS and HTS was found to be 212 and 88.7 mg/g, respectively. The variation could primarily be attributed to a relatively larger Surface area for BTS. Hence, to treat fluoride contaminated water, BTS can be promising as an effective adsorbent.

Ammonia Adsorption Characteristic of Reusable PAN/zeolite Fibers Made by Electrospinning (전기방사로 제작된 재이용 가능한 PAN/제올라이트 섬유의 암모니아 흡착 특성)

  • Ro, Yeon Hee;Chung, Woo Jin;Chang, Soon Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • BACKGROUND: Generally, ammonia occurs from agricultural waste disposal. Ammonia is known as a harmful substance to the human body and has a bad influence such as eutrophication on the ecosystem. It is possible to remove the ammonia by ammonia adsorption method using natural zeolite, without external influence. However, due to the natural zeolite shape, it is hard to reuse. METHODS AND RESULTS: Electrospinning method can produce fiber with constant diameter. Moreover, electrospinning method has no limitation for selecting the material to make the fiber, and thus, it is valuable to reform the surface of adsorbent. In this study, reusable membrane was made by electrospinning method. The highest removal efficiency was shown from the membrane with 20% of zeolite included, and it has been verified that it is possible to reuse the membrane through chemical treatment. The highest ammonia removal efficiency was about 92.4%. CONCLUSION: In this study, ammonia adsorption characteristics of zeolite fibers were studied. Electrospinning method can produce zeolite fiber with even distribution. Ammonia can be removed efficiently from ion exchange ability of the natural zeolite. The result of adsorption isotherm indicated that both Freundlich model and Langmuir model provided the best fit for equilibrium data. And study on desorption has demonstrated that the ion exchange from zeolite was reversible when 0.01 M NaCl and KCl solution were used.