• Title/Summary/Keyword: Return water

Search Result 526, Processing Time 0.027 seconds

Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG (LARS-WG를 이용한 기후변화에 따른 논벼 증발산량 산정)

  • Hong, Eun-Mi;Choi, Jin-Yong;Lee, Sang-Hyun;Yoo, Seung-Hwan;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.25-35
    • /
    • 2009
  • Climate change due to global warming possibly effects the agricultural water use in terms of evapotranspiration. Thus, to estimate rice evapotranspiration under the climate change, future climate data including precipitation, minimum and maximum temperatures for 90 years ($2011{\sim}2100$), were forecasted using LARS-WG. Observed 30 years ($1971{\sim}2000$) climate data and climate change scenario based on SRES A2 were prepared to operate the LARS-WG model. Using these data and FAO Blaney-Criddle method, reference evapotranspiration and rice evapotranspiration were estimated for 9 different regions in South Korea and rice evapotranspiration of 10 year return period was estimated using frequency analysis. As the results of this study, rice evapotranspiration of 10 year return period increased 1.56%, 5.99% and 10.68% for each 30 years during $2011{\sim}2100$ (2025s; $2011{\sim}2040$, 2055s; $2041{\sim}2070$, 2085s; $2071{\sim}2100$) demonstrating that the increased temperature from the climate change increases the consumptive use of crops and agricultural water use.

On the Estimation of Daily Maximum Precipitation in the Central Part of Korea. (우리나라 중부 지방의 일최대강수량 추정에 관하여)

  • 이래영
    • Water for future
    • /
    • v.11 no.1
    • /
    • pp.59-68
    • /
    • 1978
  • According to the simplified Gringorten's method of extreme values from data samples, daily maximum precipitation and return period at several stations in the central part of Korea were estimated. And also, it was known that the distribution of daily maximum precipitation of Sogcho, Chuncheon, Kangreung, Seoul, Inchon, Suwon, Seosan, Cheongju and Daejeon area belong to an exponential type of distribution.

  • PDF

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

Return flow analysis of paddy field by water balance method (물수지분석 기법에 의한 논에서의 회귀율 조사분석)

  • 정상옥;손성호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.59-68
    • /
    • 2001
  • A water balance analysis was performed for a paddy field neighboring the Dongchang stream, downstream of the Unmun reservoir, which is constructed for the urban water supply. Daily rainfall data were collected and irrigation water flow rate, drainage flow rate, evaportranspiration, infiltration, and piezometeric head were measured in the field. The flow rates were continuously observed by water level logger during the growing season. The evaportranspiration and the infiltration were measured by N-type depletion meter and cylindrical infiltrometer, respectively. PVC pipes with 12mm diameter were used for piezometric head measurement. Total Irrigation and drainage flows were 3,608mm and 1,170mm in 1999, and 3,971mm and 1,548mm in 2000, respectively. The mean and range of the daily infiltration rate were 4.4mm/d and 3.4mm/d to 5.5mm/d in 1999 and 5.1mm/d and 4.1mm/d to 6.5mm/d in 2000, respectively. The net ground water flow including the change of soil water storage was 2,855mm in 1999 and 2,540mm in 2000. The evapotranspiration was 458.3mm in 1999 and 553.5mm in 2000. The range of daily evapotranspiration rate was from 1.6 to 8.7mm/d. The return flow ratio was about 32% in 1999 and 39% in 2000 and three year average was 35% including previous study in 1997. The amount of irrigation water was much higher than design standards or references in this study, This was caused by the inadequate water management practice in the area where water was oversupplied on farmers’ request rather than following sound water management principles.

  • PDF

Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis (가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도)

  • Lee, Joo-Heon;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.889-902
    • /
    • 2011
  • In this study, frequency analysis using drought index had implemented for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in Korean Peninsular. Seoul, Daejeon, Daegu, Gwangju, and Busan weather stations were selected and precipitation data during 1974~2010 (37 years) was used for the calculation of Standardized Precipitation Index (SPI) and frequency analysis. Based on the results of goodness of fit test on the probability distribution, Generalized Extreme Value (GEV) was selected as most suitable probability distribution for the drought frequency analysis using SPI. This study can suggest return periods for historical major drought events by using newrly derived SDF curves for each stations. In case of 1994~1995 droughts which had focused on southern part of Korea. SDF curves of Gwangju weather station showed 50~100 years of return period and Busan station showed 100~200 years of return period. Besides, in case of 1988~1989 droughts, SDF of Seoul weather station were appeared as having return periods of 300 years.

CIRCULATION KINEMATICS IN NONLINEAR LABOROTORY WAVES (조파수로에서의 질량순환)

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.223-234
    • /
    • 1987
  • A weakly nonlinear solution is presented for the two-dimensional wave kinematics forced by a generic wavemaker of variable-draft. The solution is valid for both piston and hinged wavemakers of variable-draft that may be double articulated. The second-order propagating waves generated by a planar wave board are composed of two components; viz., a Stokes second-order wave and a second-harmonic wave forced by the wavemaker which travels at a different speed. A previously neglected time-independent solution that is required to satisfy a kinematic boundary condition on the wavemaker as well as a mixed boundary condition on the free surface is included for the first time. A component of the time-independent solution is found to accurately estimate the mean return current(correct to second-order) in a closed wave flume. This mean return current is usually estimated from kinematic considerations by a conservation of mass principle.

  • PDF

Regional flood frequency analysis of extreme rainfall in Thailand, based on L-moments

  • Thanawan Prahadchai;Piyapatr Busababodhin;Jeong-Soo Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.37-53
    • /
    • 2024
  • In this study, flood records from 79 sites across Thailand were analyzed to estimate flood indices using the regional frequency analysis based on the L-moments method. Observation sites were grouped into homogeneous regions using k-means and Ward's clustering techniques. Among various distributions evaluated, the generalized extreme value distribution emerged as the most appropriate for certain regions. Regional growth curves were subsequently established for each delineated region. Furthermore, 20- and 100-year return values were derived to illustrate the recurrence intervals of maximum rainfall across Thailand. The predicted return values tend to increase at each site, which is associated with growth curves that could describe an increasing long-term predictive pattern. The findings of this study hold significant implications for water management strategies and the design of flood mitigation structures in the country.

The re-estimating on the aumount of agricultural water use in Korea (우리 나라 농업용수 이용량의 재산정(관개배수 \circled2))

  • 김현영;심문산
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.157-161
    • /
    • 2000
  • The peculiarity of agricultural water in Korea is taking advantage of the effective rainfall and return flow in consumptive use. The agricultural water which the Ministryof Construction figured out in 1989 was excluded these traits. As a result of the re-estimating amount of agricultural water in 1999, we can presume it up to 14.9 billion m$\^$3/ to 22.6 billion m$\^$3/ per year.

  • PDF

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.